Leibniz代数群的匹配对,Nambu-Jacobi结构和模类

Raúl Ibañez , Belén Lopez , Juan C Marrero , Edith Padron
{"title":"Leibniz代数群的匹配对,Nambu-Jacobi结构和模类","authors":"Raúl Ibañez ,&nbsp;Belén Lopez ,&nbsp;Juan C Marrero ,&nbsp;Edith Padron","doi":"10.1016/S0764-4442(01)02150-4","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order <em>n</em>, <em>n</em>&gt;2, over a manifold <em>M</em> defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle <span><math><mtext>⋀</mtext><msup><mi></mi><mn>n−1</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)⊕⋀</mtext><msup><mi></mi><mn>n−2</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)→M</mtext></math></span> is a Leibniz algebroid. Finally, if <em>M</em> is orientable, the modular class of <em>M</em> is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 861-866"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02150-4","citationCount":"6","resultStr":"{\"title\":\"Matched pairs of Leibniz algebroids, Nambu–Jacobi structures and modular class\",\"authors\":\"Raúl Ibañez ,&nbsp;Belén Lopez ,&nbsp;Juan C Marrero ,&nbsp;Edith Padron\",\"doi\":\"10.1016/S0764-4442(01)02150-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order <em>n</em>, <em>n</em>&gt;2, over a manifold <em>M</em> defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle <span><math><mtext>⋀</mtext><msup><mi></mi><mn>n−1</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)⊕⋀</mtext><msup><mi></mi><mn>n−2</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)→M</mtext></math></span> is a Leibniz algebroid. Finally, if <em>M</em> is orientable, the modular class of <em>M</em> is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 861-866\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02150-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

引入了莱布尼兹代数群配对对的概念,并证明了流形M上n, n>2阶的Nambu-Jacobi结构定义了莱布尼兹代数群配对对。因此,可以推导出向量束* * n−1(T∗M)⊕* * n−2(T∗M)→M是一个莱布尼兹代数。最后,如果M是可定向的,则M的模类被定义为关于该莱布尼兹代数的1阶上同调类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matched pairs of Leibniz algebroids, Nambu–Jacobi structures and modular class

The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order n, n>2, over a manifold M defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle n−1(TM)⊕⋀n−2(TM)→M is a Leibniz algebroid. Finally, if M is orientable, the modular class of M is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信