Raúl Ibañez , Belén Lopez , Juan C Marrero , Edith Padron
{"title":"Leibniz代数群的匹配对,Nambu-Jacobi结构和模类","authors":"Raúl Ibañez , Belén Lopez , Juan C Marrero , Edith Padron","doi":"10.1016/S0764-4442(01)02150-4","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order <em>n</em>, <em>n</em>>2, over a manifold <em>M</em> defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle <span><math><mtext>⋀</mtext><msup><mi></mi><mn>n−1</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)⊕⋀</mtext><msup><mi></mi><mn>n−2</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)→M</mtext></math></span> is a Leibniz algebroid. Finally, if <em>M</em> is orientable, the modular class of <em>M</em> is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 861-866"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02150-4","citationCount":"6","resultStr":"{\"title\":\"Matched pairs of Leibniz algebroids, Nambu–Jacobi structures and modular class\",\"authors\":\"Raúl Ibañez , Belén Lopez , Juan C Marrero , Edith Padron\",\"doi\":\"10.1016/S0764-4442(01)02150-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order <em>n</em>, <em>n</em>>2, over a manifold <em>M</em> defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle <span><math><mtext>⋀</mtext><msup><mi></mi><mn>n−1</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)⊕⋀</mtext><msup><mi></mi><mn>n−2</mn></msup><mtext>(</mtext><mtext>T</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>M)→M</mtext></math></span> is a Leibniz algebroid. Finally, if <em>M</em> is orientable, the modular class of <em>M</em> is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 861-866\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02150-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matched pairs of Leibniz algebroids, Nambu–Jacobi structures and modular class
The notion of a matched pair of Leibniz algebroids is introduced and it is shown that a Nambu–Jacobi structure of order n, n>2, over a manifold M defines a matched pair of Leibniz algebroids. As a consequence, one deduces that the vector bundle is a Leibniz algebroid. Finally, if M is orientable, the modular class of M is defined as a cohomology class of order 1 with respect to this Leibniz algebroid.