基于直方图的GPS轨迹聚类特征提取

Q2 Engineering
C. Nguyen, T. Dinh, Van-Hau Nguyen, N. Tran, Anh Le
{"title":"基于直方图的GPS轨迹聚类特征提取","authors":"C. Nguyen, T. Dinh, Van-Hau Nguyen, N. Tran, Anh Le","doi":"10.4108/eai.13-7-2018.162796","DOIUrl":null,"url":null,"abstract":"Clustering trajectories from GPS data is a crucial task for developing applications in intelligent transportation systems. Most existing approaches perform clustering on raw data consisting of series of GPS positions of moving objects over time. Such approaches are not suitable for classifying moving behaviours of vehicles, e.g., how to distinguish between a trajectory of a taxi and a trajectory of a private car. In this paper, we focus on the problem of clustering trajectories of vehicles having the same moving behaviours. Our approach is based on histogram-based feature extraction to model moving behaviours of objects and utilizes traditional clustering algorithms to group trajectories. We perform experiments on real datasets and obtain better results than existing approaches.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"57 1","pages":"e3"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histogram-based Feature Extraction for GPS Trajectory Clustering\",\"authors\":\"C. Nguyen, T. Dinh, Van-Hau Nguyen, N. Tran, Anh Le\",\"doi\":\"10.4108/eai.13-7-2018.162796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering trajectories from GPS data is a crucial task for developing applications in intelligent transportation systems. Most existing approaches perform clustering on raw data consisting of series of GPS positions of moving objects over time. Such approaches are not suitable for classifying moving behaviours of vehicles, e.g., how to distinguish between a trajectory of a taxi and a trajectory of a private car. In this paper, we focus on the problem of clustering trajectories of vehicles having the same moving behaviours. Our approach is based on histogram-based feature extraction to model moving behaviours of objects and utilizes traditional clustering algorithms to group trajectories. We perform experiments on real datasets and obtain better results than existing approaches.\",\"PeriodicalId\":33474,\"journal\":{\"name\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"volume\":\"57 1\",\"pages\":\"e3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.13-7-2018.162796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.162796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

从GPS数据中聚类轨迹是开发智能交通系统应用的关键任务。大多数现有的方法对原始数据进行聚类,这些数据由一系列移动物体的GPS位置组成。这种方法不适合对车辆的移动行为进行分类,例如,如何区分出租车的轨迹和私家车的轨迹。本文主要研究具有相同运动行为的车辆的聚类轨迹问题。我们的方法基于基于直方图的特征提取来模拟物体的运动行为,并利用传统的聚类算法来对轨迹进行分组。我们在真实数据集上进行了实验,得到了比现有方法更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histogram-based Feature Extraction for GPS Trajectory Clustering
Clustering trajectories from GPS data is a crucial task for developing applications in intelligent transportation systems. Most existing approaches perform clustering on raw data consisting of series of GPS positions of moving objects over time. Such approaches are not suitable for classifying moving behaviours of vehicles, e.g., how to distinguish between a trajectory of a taxi and a trajectory of a private car. In this paper, we focus on the problem of clustering trajectories of vehicles having the same moving behaviours. Our approach is based on histogram-based feature extraction to model moving behaviours of objects and utilizes traditional clustering algorithms to group trajectories. We perform experiments on real datasets and obtain better results than existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信