只有一个对象的类别中的产品

R. Statman
{"title":"只有一个对象的类别中的产品","authors":"R. Statman","doi":"10.4204/EPTCS.333.24","DOIUrl":null,"url":null,"abstract":"We consider certain decision problems for the free model of the theory of Cartesian monoids. We introduce a model of computation based on the notion of a single stack one-way PDA due to Ginsburg, Greibach and Harrison. This model allows us to solve problems such as (1) Given a finite set B of elements and an element F, is F a product of members of B? (2) Is the submonoid generated by the finite set B infinite? for certain fragments of the free Cartesian monoid. These fragments include the submonoid of right invertible elements and so our results apply to the Thompson-Higman groups.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"39 1","pages":"347-353"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products in a Category with Only One Object\",\"authors\":\"R. Statman\",\"doi\":\"10.4204/EPTCS.333.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider certain decision problems for the free model of the theory of Cartesian monoids. We introduce a model of computation based on the notion of a single stack one-way PDA due to Ginsburg, Greibach and Harrison. This model allows us to solve problems such as (1) Given a finite set B of elements and an element F, is F a product of members of B? (2) Is the submonoid generated by the finite set B infinite? for certain fragments of the free Cartesian monoid. These fragments include the submonoid of right invertible elements and so our results apply to the Thompson-Higman groups.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"39 1\",\"pages\":\"347-353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.333.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了笛卡尔单群理论的自由模型的若干判定问题。我们介绍了Ginsburg, Greibach和Harrison基于单栈单向PDA概念的计算模型。这个模型允许我们解决以下问题:(1)给定一个有限元素集合B和一个元素F, F是B中元素的乘积吗?(2)有限集合B生成的子拟群是无限的吗?自由笛卡儿单形的某些片段。这些片段包括右可逆元的子群,因此我们的结果适用于Thompson-Higman群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products in a Category with Only One Object
We consider certain decision problems for the free model of the theory of Cartesian monoids. We introduce a model of computation based on the notion of a single stack one-way PDA due to Ginsburg, Greibach and Harrison. This model allows us to solve problems such as (1) Given a finite set B of elements and an element F, is F a product of members of B? (2) Is the submonoid generated by the finite set B infinite? for certain fragments of the free Cartesian monoid. These fragments include the submonoid of right invertible elements and so our results apply to the Thompson-Higman groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信