{"title":"Soergel微积分和Schubert微积分","authors":"Xuhua He, G. Williamson","doi":"10.21915/BIMAS.2018303","DOIUrl":null,"url":null,"abstract":"We reduce some key calculations of compositions of morphisms between Soergel bimodules (\"Soergel calculus\") to calculations in the nil Hecke ring (\"Schubert calculus\"). This formula has several applications in modular representation theory.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"52 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2015-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Soergel Calculus and Schubert Calculus\",\"authors\":\"Xuhua He, G. Williamson\",\"doi\":\"10.21915/BIMAS.2018303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reduce some key calculations of compositions of morphisms between Soergel bimodules (\\\"Soergel calculus\\\") to calculations in the nil Hecke ring (\\\"Schubert calculus\\\"). This formula has several applications in modular representation theory.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/BIMAS.2018303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We reduce some key calculations of compositions of morphisms between Soergel bimodules ("Soergel calculus") to calculations in the nil Hecke ring ("Schubert calculus"). This formula has several applications in modular representation theory.