聚合物纳米晶体的弹性应变能行为

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
Alexander I. Slutsker , Yuri I. Polikarpov , Dmitry D. Karov
{"title":"聚合物纳米晶体的弹性应变能行为","authors":"Alexander I. Slutsker ,&nbsp;Yuri I. Polikarpov ,&nbsp;Dmitry D. Karov","doi":"10.1016/j.spjpm.2016.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>In the paper, the changes in axial and contour lengths of skeletal interatomic bonds in the chain molecules of polyethylene nanocrystals have been measured using X-ray diffractometry and Raman spectrometry. In the course of the measurements the samples were subjected to stretching and heating (mechanical and thermal actions). The measured force and temperature dependences were analyzed and the calculated description of the polymer nanocrystal strain was inferred from them. In so doing the original results were obtained for the thermal action. The potential energy components related to both the skeletal bond stretching and the chain molecule bending were determined for the strained polymer crystal. The sharp distinction between the ratios of these components for the object under mechanical and thermal actions was found.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2016.05.005","citationCount":"2","resultStr":"{\"title\":\"Elastic strain energy behavior in the polymer nanocrystals\",\"authors\":\"Alexander I. Slutsker ,&nbsp;Yuri I. Polikarpov ,&nbsp;Dmitry D. Karov\",\"doi\":\"10.1016/j.spjpm.2016.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the paper, the changes in axial and contour lengths of skeletal interatomic bonds in the chain molecules of polyethylene nanocrystals have been measured using X-ray diffractometry and Raman spectrometry. In the course of the measurements the samples were subjected to stretching and heating (mechanical and thermal actions). The measured force and temperature dependences were analyzed and the calculated description of the polymer nanocrystal strain was inferred from them. In so doing the original results were obtained for the thermal action. The potential energy components related to both the skeletal bond stretching and the chain molecule bending were determined for the strained polymer crystal. The sharp distinction between the ratios of these components for the object under mechanical and thermal actions was found.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2016.05.005\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722316300524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722316300524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文用x射线衍射法和拉曼光谱法测量了聚乙烯纳米晶体链分子中骨架原子间键的轴向和轮廓长度的变化。在测量过程中,样品受到拉伸和加热(机械和热作用)。分析了测得的力和温度的依赖关系,并由此推导出聚合物纳米晶体应变的计算描述。这样就得到了热作用的原始结果。测定了张力聚合物晶体中与骨架键拉伸和链分子弯曲相关的势能组分。在机械和热作用下,这些成分的比例有明显的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic strain energy behavior in the polymer nanocrystals

In the paper, the changes in axial and contour lengths of skeletal interatomic bonds in the chain molecules of polyethylene nanocrystals have been measured using X-ray diffractometry and Raman spectrometry. In the course of the measurements the samples were subjected to stretching and heating (mechanical and thermal actions). The measured force and temperature dependences were analyzed and the calculated description of the polymer nanocrystal strain was inferred from them. In so doing the original results were obtained for the thermal action. The potential energy components related to both the skeletal bond stretching and the chain molecule bending were determined for the strained polymer crystal. The sharp distinction between the ratios of these components for the object under mechanical and thermal actions was found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信