基于多径信道信息的因子图同步定位和映射

E. Leitinger, Florian Meyer, F. Tufvesson, K. Witrisal
{"title":"基于多径信道信息的因子图同步定位和映射","authors":"E. Leitinger, Florian Meyer, F. Tufvesson, K. Witrisal","doi":"10.1109/ICCW.2017.7962732","DOIUrl":null,"url":null,"abstract":"Radio-based localization has the potential to provide centimeter-level position information. In this paper we apply joint probabilistic data association to multipath-assisted simultaneous localization and mapping (SLAM) for this purpose. In multipath-assisted localization, position-related information in multipath components (MPCs) is exploited to increase the accuracy and robustness of indoor tracking. Based on a recently introduced loopy belief propagation multipath-assisted localization scheme that performs probabilistic data association jointly with agent state estimation, we build a method for SLAM without using apriori known environment maps. The proposed method is highly accurate and robust in localizing a mobile agent while building up an environment feature map. It scales well in all relevant systems parameters and has a very low computational complexity.","PeriodicalId":6656,"journal":{"name":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"79 1","pages":"652-658"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Factor graph based simultaneous localization and mapping using multipath channel information\",\"authors\":\"E. Leitinger, Florian Meyer, F. Tufvesson, K. Witrisal\",\"doi\":\"10.1109/ICCW.2017.7962732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio-based localization has the potential to provide centimeter-level position information. In this paper we apply joint probabilistic data association to multipath-assisted simultaneous localization and mapping (SLAM) for this purpose. In multipath-assisted localization, position-related information in multipath components (MPCs) is exploited to increase the accuracy and robustness of indoor tracking. Based on a recently introduced loopy belief propagation multipath-assisted localization scheme that performs probabilistic data association jointly with agent state estimation, we build a method for SLAM without using apriori known environment maps. The proposed method is highly accurate and robust in localizing a mobile agent while building up an environment feature map. It scales well in all relevant systems parameters and has a very low computational complexity.\",\"PeriodicalId\":6656,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"79 1\",\"pages\":\"652-658\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2017.7962732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2017.7962732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

基于无线电的定位有可能提供厘米级的位置信息。在本文中,我们将联合概率数据关联应用于多路径辅助同步定位和映射(SLAM)。在多路径辅助定位中,利用多路径分量中的位置相关信息来提高室内跟踪的准确性和鲁棒性。基于最近提出的一种循环信念传播多路径辅助定位方案,结合智能体状态估计进行概率数据关联,建立了一种不使用先验已知环境图的SLAM方法。该方法在构建环境特征图的同时,具有较高的定位精度和鲁棒性。它在所有相关系统参数中都具有良好的可伸缩性,并且具有非常低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factor graph based simultaneous localization and mapping using multipath channel information
Radio-based localization has the potential to provide centimeter-level position information. In this paper we apply joint probabilistic data association to multipath-assisted simultaneous localization and mapping (SLAM) for this purpose. In multipath-assisted localization, position-related information in multipath components (MPCs) is exploited to increase the accuracy and robustness of indoor tracking. Based on a recently introduced loopy belief propagation multipath-assisted localization scheme that performs probabilistic data association jointly with agent state estimation, we build a method for SLAM without using apriori known environment maps. The proposed method is highly accurate and robust in localizing a mobile agent while building up an environment feature map. It scales well in all relevant systems parameters and has a very low computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信