Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider
{"title":"大型运动数据库中的高效运动检索","authors":"Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider","doi":"10.1145/2448196.2448199","DOIUrl":null,"url":null,"abstract":"There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"29 1","pages":"19-28"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Efficient motion retrieval in large motion databases\",\"authors\":\"Mubbasir Kapadia, I-Kao Chiang, Tiju Thomas, N. Badler, Joseph T. Kider\",\"doi\":\"10.1145/2448196.2448199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.\",\"PeriodicalId\":91160,\"journal\":{\"name\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"volume\":\"29 1\",\"pages\":\"19-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448196.2448199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448196.2448199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient motion retrieval in large motion databases
There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex motions in large motion databases. Motions are encoded using keys which represent a wide array of structural, geometric and, dynamic features of human motion. Keys provide a representative search space for indexing motions and users can specify sequences of key values as well as multiple combination of key sequences to search for complex motions. We use a trie-based data structure to provide an efficient mapping from key sequences to motions. The search times (even on a single CPU) are very fast, opening the possibility of using large motion data sets in real-time applications.