氯乙烯/3-(三甲氧基硅基)甲基丙烯酸丙酯(MPTMS)插层镁铝双氢氧化物的原位悬浮聚合。形态、热性能和扩散行为

Reza Mohammadi Berenjegani, R. Darvishi, Ghasem Payam
{"title":"氯乙烯/3-(三甲氧基硅基)甲基丙烯酸丙酯(MPTMS)插层镁铝双氢氧化物的原位悬浮聚合。形态、热性能和扩散行为","authors":"Reza Mohammadi Berenjegani, R. Darvishi, Ghasem Payam","doi":"10.1177/09673911231181842","DOIUrl":null,"url":null,"abstract":"A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ suspension polymerization of vinyl chloride/3-(trimethoxysilyl) propyl methacrylate (MPTMS) intercalated Mg-Al-layered double hydroxide: II. Morphological, thermal properties and diffusion behavior\",\"authors\":\"Reza Mohammadi Berenjegani, R. Darvishi, Ghasem Payam\",\"doi\":\"10.1177/09673911231181842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911231181842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231181842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用原位悬浮聚合法制备了一系列PVC复合材料,最佳用量为5wt %的MgAl(NO3)层状双氢氧化物(LDH)或LDH- mptms,即mptms插层Mg-Al LDH。将复合材料样品的物理、机械和热性能与纯PVC进行了比较。Brabender®塑形仪的结果表明,用LDH-MPTMS制备的PVC颗粒具有较长的热稳定时间和较短的熔化时间。LDH-MPTMS纳米片的加入提高了PVC颗粒的胶凝程度,从而降低了加工的温度/时间要求。通过标准的脱氯化氢试验证实了复合材料的热稳定性,与纯PVC相比,脱氯化氢率提高了40%。这种改善比PVC/LDH复合材料高出12%。TGA曲线表明,添加5wt% LDH或LDH- mptms时,PVC树脂的5%和50%失重温度显著增加,大约增长11°C。PVC/LDH- mptms复合材料的玻璃态存储模量和Tg均高于纯PVC和PVC/LDH复合材料。力学分析表明,与PVC/LDH复合材料和纯PVC相比,PVC/LDH- mptms复合材料具有更高的刚度和韧性,以及更高的Charpy缺口冲击强度、抗拉强度和杨氏模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ suspension polymerization of vinyl chloride/3-(trimethoxysilyl) propyl methacrylate (MPTMS) intercalated Mg-Al-layered double hydroxide: II. Morphological, thermal properties and diffusion behavior
A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信