高频外汇数据的协同预测模型

S. Ebrahimijam, Cahit Adaoglu, Korhan K. Gokmenoglu
{"title":"高频外汇数据的协同预测模型","authors":"S. Ebrahimijam, Cahit Adaoglu, Korhan K. Gokmenoglu","doi":"10.24818/18423264/52.1.18.18","DOIUrl":null,"url":null,"abstract":"In this study, we develop a synergistic forecasting model using the information fusion approach. By using high frequency (one-minute) foreign exchange (FX) data, the model fuses two standalone models, namely the technical analysis structural model and the intra-market model. Subsequently, the outputs are fed into a unique modified extended Kalman filter whose functional parameters are estimated dynamically by using an artificial neural network. The synergistic model is tested on four currency pairs that dominate the FX market. In terms of forecasting performance, both root mean squared error and correct directional change performance results show that the synergistic model is statistically outperform and superior to each of the both standalone models as well as to the benchmark random walk model in the literature.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Synergistic Forecasting Model for High-Frequency Foreign Exchange Data\",\"authors\":\"S. Ebrahimijam, Cahit Adaoglu, Korhan K. Gokmenoglu\",\"doi\":\"10.24818/18423264/52.1.18.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we develop a synergistic forecasting model using the information fusion approach. By using high frequency (one-minute) foreign exchange (FX) data, the model fuses two standalone models, namely the technical analysis structural model and the intra-market model. Subsequently, the outputs are fed into a unique modified extended Kalman filter whose functional parameters are estimated dynamically by using an artificial neural network. The synergistic model is tested on four currency pairs that dominate the FX market. In terms of forecasting performance, both root mean squared error and correct directional change performance results show that the synergistic model is statistically outperform and superior to each of the both standalone models as well as to the benchmark random walk model in the literature.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24818/18423264/52.1.18.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24818/18423264/52.1.18.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们利用信息融合的方法开发了一个协同预测模型。通过使用高频(一分钟)外汇数据,该模型融合了两个独立的模型,即技术分析结构模型和市场内模型。然后,将输出输入到一个独特的改进扩展卡尔曼滤波器中,该滤波器使用人工神经网络动态估计功能参数。协同模型在主导外汇市场的四种货币对上进行了测试。在预测性能方面,均方根误差和正确的方向变化性能结果都表明,协同模型在统计上优于独立模型和文献中的基准随机游走模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Synergistic Forecasting Model for High-Frequency Foreign Exchange Data
In this study, we develop a synergistic forecasting model using the information fusion approach. By using high frequency (one-minute) foreign exchange (FX) data, the model fuses two standalone models, namely the technical analysis structural model and the intra-market model. Subsequently, the outputs are fed into a unique modified extended Kalman filter whose functional parameters are estimated dynamically by using an artificial neural network. The synergistic model is tested on four currency pairs that dominate the FX market. In terms of forecasting performance, both root mean squared error and correct directional change performance results show that the synergistic model is statistically outperform and superior to each of the both standalone models as well as to the benchmark random walk model in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信