{"title":"结合渔业资料及海底温度预测鱼类位置","authors":"Matthieu Ospici, Klaas Sys, Sophie Guegan-Marat","doi":"10.48550/arXiv.2205.02107","DOIUrl":null,"url":null,"abstract":"This paper combines fisheries dependent data and environmental data to be used in a machine learning pipeline to predict the spatio-temporal abundance of two species (plaice and sole) commonly caught by the Belgian fishery in the North Sea. By combining fisheries related features with environmental data, sea bottom temperature derived from remote sensing, a higher accuracy can be achieved. In a forecast setting, the predictive accuracy is further improved by predicting, using a recurrent deep neural network, the sea bottom temperature up to four days in advance instead of relying on the last previous temperature measurement.","PeriodicalId":74527,"journal":{"name":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","volume":"73 1","pages":"437-448"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of fish location by combining fisheries data and sea bottom temperature forecasting\",\"authors\":\"Matthieu Ospici, Klaas Sys, Sophie Guegan-Marat\",\"doi\":\"10.48550/arXiv.2205.02107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper combines fisheries dependent data and environmental data to be used in a machine learning pipeline to predict the spatio-temporal abundance of two species (plaice and sole) commonly caught by the Belgian fishery in the North Sea. By combining fisheries related features with environmental data, sea bottom temperature derived from remote sensing, a higher accuracy can be achieved. In a forecast setting, the predictive accuracy is further improved by predicting, using a recurrent deep neural network, the sea bottom temperature up to four days in advance instead of relying on the last previous temperature measurement.\",\"PeriodicalId\":74527,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing\",\"volume\":\"73 1\",\"pages\":\"437-448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.02107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of fish location by combining fisheries data and sea bottom temperature forecasting
This paper combines fisheries dependent data and environmental data to be used in a machine learning pipeline to predict the spatio-temporal abundance of two species (plaice and sole) commonly caught by the Belgian fishery in the North Sea. By combining fisheries related features with environmental data, sea bottom temperature derived from remote sensing, a higher accuracy can be achieved. In a forecast setting, the predictive accuracy is further improved by predicting, using a recurrent deep neural network, the sea bottom temperature up to four days in advance instead of relying on the last previous temperature measurement.