{"title":"蓝藻毒素的神经毒性","authors":"M. Florczyk, A. Łakomiak, M. Woźny, P. Brzuzan","doi":"10.14799/EBMS246","DOIUrl":null,"url":null,"abstract":"Eutrophication of marine- and fresh-waters can lead to excessive development of cyanobacterial blooms, which may contain strains that produce toxins. These toxins are secondary metabolites which can accumulate in the food chain and contaminate drinking water, thus posing a potential threat to the health of humans and aquatic organisms. These toxins include a variety of compounds with different mechanisms. This review focuses on the neurotoxicity of microcystin and other cyanotoxins. Although the hepatotoxic action of microcystins is commonly known, its neurotoxic effects have also been described, e.g. oxidative stress, cytoskeletal changes and","PeriodicalId":11733,"journal":{"name":"Environmental biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Neurotoxicity of cyanobacterial toxins\",\"authors\":\"M. Florczyk, A. Łakomiak, M. Woźny, P. Brzuzan\",\"doi\":\"10.14799/EBMS246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eutrophication of marine- and fresh-waters can lead to excessive development of cyanobacterial blooms, which may contain strains that produce toxins. These toxins are secondary metabolites which can accumulate in the food chain and contaminate drinking water, thus posing a potential threat to the health of humans and aquatic organisms. These toxins include a variety of compounds with different mechanisms. This review focuses on the neurotoxicity of microcystin and other cyanotoxins. Although the hepatotoxic action of microcystins is commonly known, its neurotoxic effects have also been described, e.g. oxidative stress, cytoskeletal changes and\",\"PeriodicalId\":11733,\"journal\":{\"name\":\"Environmental biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14799/EBMS246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14799/EBMS246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eutrophication of marine- and fresh-waters can lead to excessive development of cyanobacterial blooms, which may contain strains that produce toxins. These toxins are secondary metabolites which can accumulate in the food chain and contaminate drinking water, thus posing a potential threat to the health of humans and aquatic organisms. These toxins include a variety of compounds with different mechanisms. This review focuses on the neurotoxicity of microcystin and other cyanotoxins. Although the hepatotoxic action of microcystins is commonly known, its neurotoxic effects have also been described, e.g. oxidative stress, cytoskeletal changes and