{"title":"Max-SAT的证明和证书","authors":"M. Py, Mohamed Sami Cherif, Djamal Habet","doi":"10.1613/jair.1.13811","DOIUrl":null,"url":null,"abstract":"Current Max-SAT solvers are able to efficiently compute the optimal value of an input instance but they do not provide any certificate of its validity. In this paper, we present a tool, called MS-Builder, which generates certificates for the Max-SAT problem in the particular form of a sequence of equivalence-preserving transformations. To generate a certificate, MS-Builder iteratively calls a SAT oracle to get a SAT resolution refutation which is handled and adapted into a sound refutation for Max-SAT. In particular, we prove that the size of the computed Max-SAT refutation is linear with respect to the size of the initial refutation if it is semi-read-once, tree-like regular, tree-like or semi-tree-like. Additionally, we propose an extendable tool, called MS-Checker, able to verify the validity of any Max-SAT certificate using Max-SAT inference rules. Both tools are evaluated on the unweighted and weighted benchmark instances of the 2020 Max-SAT Evaluation.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proofs and Certificates for Max-SAT\",\"authors\":\"M. Py, Mohamed Sami Cherif, Djamal Habet\",\"doi\":\"10.1613/jair.1.13811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current Max-SAT solvers are able to efficiently compute the optimal value of an input instance but they do not provide any certificate of its validity. In this paper, we present a tool, called MS-Builder, which generates certificates for the Max-SAT problem in the particular form of a sequence of equivalence-preserving transformations. To generate a certificate, MS-Builder iteratively calls a SAT oracle to get a SAT resolution refutation which is handled and adapted into a sound refutation for Max-SAT. In particular, we prove that the size of the computed Max-SAT refutation is linear with respect to the size of the initial refutation if it is semi-read-once, tree-like regular, tree-like or semi-tree-like. Additionally, we propose an extendable tool, called MS-Checker, able to verify the validity of any Max-SAT certificate using Max-SAT inference rules. Both tools are evaluated on the unweighted and weighted benchmark instances of the 2020 Max-SAT Evaluation.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13811\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13811","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Current Max-SAT solvers are able to efficiently compute the optimal value of an input instance but they do not provide any certificate of its validity. In this paper, we present a tool, called MS-Builder, which generates certificates for the Max-SAT problem in the particular form of a sequence of equivalence-preserving transformations. To generate a certificate, MS-Builder iteratively calls a SAT oracle to get a SAT resolution refutation which is handled and adapted into a sound refutation for Max-SAT. In particular, we prove that the size of the computed Max-SAT refutation is linear with respect to the size of the initial refutation if it is semi-read-once, tree-like regular, tree-like or semi-tree-like. Additionally, we propose an extendable tool, called MS-Checker, able to verify the validity of any Max-SAT certificate using Max-SAT inference rules. Both tools are evaluated on the unweighted and weighted benchmark instances of the 2020 Max-SAT Evaluation.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.