{"title":"波动性风险市场价格不确定下的欧式期权估值","authors":"Bartosz Jaroszkowski, Max Jensen","doi":"10.1080/1350486X.2022.2125884","DOIUrl":null,"url":null,"abstract":"We propose a model to quantify the effect of parameter uncertainty on the option price in the Heston model. More precisely, we present a Hamilton–Jacobi–Bellman framework which allows us to evaluate best and worst-case scenarios under an uncertain market price of volatility risk. For the numerical approximation, the Hamilton–Jacobi–Bellman equation is reformulated to enable the solution with a finite element method. A case study with butterfly options exhibits how the dependence of Delta on the magnitude of the uncertainty is nonlinear and highly varied across the parameter regime.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Valuation of European Options Under an Uncertain Market Price of Volatility Risk\",\"authors\":\"Bartosz Jaroszkowski, Max Jensen\",\"doi\":\"10.1080/1350486X.2022.2125884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a model to quantify the effect of parameter uncertainty on the option price in the Heston model. More precisely, we present a Hamilton–Jacobi–Bellman framework which allows us to evaluate best and worst-case scenarios under an uncertain market price of volatility risk. For the numerical approximation, the Hamilton–Jacobi–Bellman equation is reformulated to enable the solution with a finite element method. A case study with butterfly options exhibits how the dependence of Delta on the magnitude of the uncertainty is nonlinear and highly varied across the parameter regime.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2022.2125884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2022.2125884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Valuation of European Options Under an Uncertain Market Price of Volatility Risk
We propose a model to quantify the effect of parameter uncertainty on the option price in the Heston model. More precisely, we present a Hamilton–Jacobi–Bellman framework which allows us to evaluate best and worst-case scenarios under an uncertain market price of volatility risk. For the numerical approximation, the Hamilton–Jacobi–Bellman equation is reformulated to enable the solution with a finite element method. A case study with butterfly options exhibits how the dependence of Delta on the magnitude of the uncertainty is nonlinear and highly varied across the parameter regime.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.