Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, R. Netravali
{"title":"一个由自然语言处理驱动的系统范围调试助手","authors":"Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, R. Netravali","doi":"10.1145/3357223.3362701","DOIUrl":null,"url":null,"abstract":"Despite advances in debugging tools, systems debugging today remains largely manual. A developer typically follows an iterative and time-consuming process to move from a reported bug to a bug fix. This is because developers are still responsible for making sense of system-wide semantics, bridging together outputs and features from existing debugging tools, and extracting information from many diverse data sources (e.g., bug reports, source code, comments, documentation, and execution traces). We believe that the latest statistical natural language processing (NLP) techniques can help automatically analyze these data sources and significantly improve the systems debugging experience. We present early results to highlight the promise of NLP-powered debugging, and discuss systems and learning challenges that must be overcome to realize this vision.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A System-Wide Debugging Assistant Powered by Natural Language Processing\",\"authors\":\"Pradeep Dogga, Karthik Narasimhan, Anirudh Sivaraman, R. Netravali\",\"doi\":\"10.1145/3357223.3362701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite advances in debugging tools, systems debugging today remains largely manual. A developer typically follows an iterative and time-consuming process to move from a reported bug to a bug fix. This is because developers are still responsible for making sense of system-wide semantics, bridging together outputs and features from existing debugging tools, and extracting information from many diverse data sources (e.g., bug reports, source code, comments, documentation, and execution traces). We believe that the latest statistical natural language processing (NLP) techniques can help automatically analyze these data sources and significantly improve the systems debugging experience. We present early results to highlight the promise of NLP-powered debugging, and discuss systems and learning challenges that must be overcome to realize this vision.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A System-Wide Debugging Assistant Powered by Natural Language Processing
Despite advances in debugging tools, systems debugging today remains largely manual. A developer typically follows an iterative and time-consuming process to move from a reported bug to a bug fix. This is because developers are still responsible for making sense of system-wide semantics, bridging together outputs and features from existing debugging tools, and extracting information from many diverse data sources (e.g., bug reports, source code, comments, documentation, and execution traces). We believe that the latest statistical natural language processing (NLP) techniques can help automatically analyze these data sources and significantly improve the systems debugging experience. We present early results to highlight the promise of NLP-powered debugging, and discuss systems and learning challenges that must be overcome to realize this vision.