面向高能衍射的深度学习增强蒙特卡罗事件发生器

Q4 Physics and Astronomy
Mikael Mieskolainen
{"title":"面向高能衍射的深度学习增强蒙特卡罗事件发生器","authors":"Mikael Mieskolainen","doi":"10.5506/aphyspolbsupp.16.5-a6","DOIUrl":null,"url":null,"abstract":"We introduce GRANIITTI, a new Monte Carlo event generator designed especially to solve the enigma of glueballs at the LHC. We discuss the available physics processes, compare the simulations against STAR data from RHIC and span ambitious future directions towards the first diffractive event generator with a deep learning-enhanced computational engine.","PeriodicalId":39158,"journal":{"name":"Acta Physica Polonica B, Proceedings Supplement","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graniitti: Towards a Deep Learning-enhanced Monte Carlo Event Generator for High-energy Diffraction\",\"authors\":\"Mikael Mieskolainen\",\"doi\":\"10.5506/aphyspolbsupp.16.5-a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce GRANIITTI, a new Monte Carlo event generator designed especially to solve the enigma of glueballs at the LHC. We discuss the available physics processes, compare the simulations against STAR data from RHIC and span ambitious future directions towards the first diffractive event generator with a deep learning-enhanced computational engine.\",\"PeriodicalId\":39158,\"journal\":{\"name\":\"Acta Physica Polonica B, Proceedings Supplement\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B, Proceedings Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5506/aphyspolbsupp.16.5-a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B, Proceedings Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/aphyspolbsupp.16.5-a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的蒙特卡罗事件发生器GRANIITTI,它是专门为在大型强子对撞机中解决胶球之谜而设计的。我们讨论了可用的物理过程,将模拟与RHIC的STAR数据进行了比较,并跨越了具有深度学习增强计算引擎的第一个衍射事件生成器的雄心勃勃的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graniitti: Towards a Deep Learning-enhanced Monte Carlo Event Generator for High-energy Diffraction
We introduce GRANIITTI, a new Monte Carlo event generator designed especially to solve the enigma of glueballs at the LHC. We discuss the available physics processes, compare the simulations against STAR data from RHIC and span ambitious future directions towards the first diffractive event generator with a deep learning-enhanced computational engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica B, Proceedings Supplement
Acta Physica Polonica B, Proceedings Supplement Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.50
自引率
0.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信