{"title":"将传统的尾矿储存设施转换为使用纳尔科分水岭聚合物的周边排放中心滗水器配置","authors":"F. Verdoorn, K. Gibbs","doi":"10.36487/ACG_REP/1910_21_GIBBS","DOIUrl":null,"url":null,"abstract":"In 2012, SIMEC Mining commenced a detailed investigation into changing the way the magnetite tailings storage facility (Mag TSF) operates at the South Middleback Ranges (SMR) to increase water recovery and provide a sustainable cost-base for tailings management. Changes were also necessary to support the Magnetite Expansion Project (MEP) that was destined to be commissioned in October 2013. A feasibility study was performed with Golder Associates to understand the technical and commercial influences and provide a capital estimate for several options. The selected option from the study was a redesign of the current dual discharge TSF to a perimeter discharge, central decant (PDCD) design. \nApplication of Nalco WaterShed polymer at the Big Baron Pit (Verdoornet al. 2018) revealed the technology would greatly assist in the successful conversion of the TSF to a PDCD configuration. Expectation was high that WaterShed polymer treatment would allow greater beach angle control, improved water recovery, and a reduction in surface water pooling across the TSF with water pooling concentrated around the central decant allowing for efficient removal prior to loss via evaporation or seepage. \nA conceptual design for the polymer tailings dewatering application was developed in collaboration with Nalco Water and dosing commenced in October 2013. Due to unknown risks associated with dewatering magnetite tailings, the project was split into two stages, namely, phase 1: a proof of concept trial to establish the applicability of Watershed on the magnetite tailings prior to commissioning of MEP; and phase 2: fully operationalise the PDCD configuration. \nGolder was engaged to develop a life-of-mine plan for the TSF at SMR that could be safely operated to a planned final height of RL 199 m. Throughout 2013 and 2014, design and construction occurred to convert the Mag TSF to a PDCD facility. A master plan was developed to manage tailings storage for five years from March 2014, referred to as the ‘First 5 Year Plan’. This involved six wall raises that would eventually fill the three voids near the western embankment and bring the height of the TSF to RL 172 m. \nThe civil concept selected was based on an alternatives assessment that presented three options. SIMEC Mining chose the lowest cost approach of filling the voids with WaterShed polymer treated tailings to provide a base for 3 m wall raises upstream. Strict deposition and water recovery models were followed to ensure sufficient dewatering and the subsequent drying of the tailings layers. There was also extensive test work completed prior to each of the individual embankment raises to ensure that the dewatered tailings had the appropriate density and strength properties to support the raises before commencing with the lifts. \nDuring the first five years of operation, water recovery was around 60% and the volume utilisation was in line with the deposition model. The high percentage of water recovered enabled the processing plant to reach its new design capability, reduce significant downtime due to water availability and provide the mining operations with sufficient water for dust suppression. The second five-year plan is currently being finalised and progress is consistent with the tailings deposition and the dewatering model.","PeriodicalId":20480,"journal":{"name":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of a conventional tailings storage facility to a perimeter discharge central decant configuration using Nalco WaterShed polymer\",\"authors\":\"F. Verdoorn, K. Gibbs\",\"doi\":\"10.36487/ACG_REP/1910_21_GIBBS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2012, SIMEC Mining commenced a detailed investigation into changing the way the magnetite tailings storage facility (Mag TSF) operates at the South Middleback Ranges (SMR) to increase water recovery and provide a sustainable cost-base for tailings management. Changes were also necessary to support the Magnetite Expansion Project (MEP) that was destined to be commissioned in October 2013. A feasibility study was performed with Golder Associates to understand the technical and commercial influences and provide a capital estimate for several options. The selected option from the study was a redesign of the current dual discharge TSF to a perimeter discharge, central decant (PDCD) design. \\nApplication of Nalco WaterShed polymer at the Big Baron Pit (Verdoornet al. 2018) revealed the technology would greatly assist in the successful conversion of the TSF to a PDCD configuration. Expectation was high that WaterShed polymer treatment would allow greater beach angle control, improved water recovery, and a reduction in surface water pooling across the TSF with water pooling concentrated around the central decant allowing for efficient removal prior to loss via evaporation or seepage. \\nA conceptual design for the polymer tailings dewatering application was developed in collaboration with Nalco Water and dosing commenced in October 2013. Due to unknown risks associated with dewatering magnetite tailings, the project was split into two stages, namely, phase 1: a proof of concept trial to establish the applicability of Watershed on the magnetite tailings prior to commissioning of MEP; and phase 2: fully operationalise the PDCD configuration. \\nGolder was engaged to develop a life-of-mine plan for the TSF at SMR that could be safely operated to a planned final height of RL 199 m. Throughout 2013 and 2014, design and construction occurred to convert the Mag TSF to a PDCD facility. A master plan was developed to manage tailings storage for five years from March 2014, referred to as the ‘First 5 Year Plan’. This involved six wall raises that would eventually fill the three voids near the western embankment and bring the height of the TSF to RL 172 m. \\nThe civil concept selected was based on an alternatives assessment that presented three options. SIMEC Mining chose the lowest cost approach of filling the voids with WaterShed polymer treated tailings to provide a base for 3 m wall raises upstream. Strict deposition and water recovery models were followed to ensure sufficient dewatering and the subsequent drying of the tailings layers. There was also extensive test work completed prior to each of the individual embankment raises to ensure that the dewatered tailings had the appropriate density and strength properties to support the raises before commencing with the lifts. \\nDuring the first five years of operation, water recovery was around 60% and the volume utilisation was in line with the deposition model. The high percentage of water recovered enabled the processing plant to reach its new design capability, reduce significant downtime due to water availability and provide the mining operations with sufficient water for dust suppression. The second five-year plan is currently being finalised and progress is consistent with the tailings deposition and the dewatering model.\",\"PeriodicalId\":20480,\"journal\":{\"name\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36487/ACG_REP/1910_21_GIBBS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/ACG_REP/1910_21_GIBBS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conversion of a conventional tailings storage facility to a perimeter discharge central decant configuration using Nalco WaterShed polymer
In 2012, SIMEC Mining commenced a detailed investigation into changing the way the magnetite tailings storage facility (Mag TSF) operates at the South Middleback Ranges (SMR) to increase water recovery and provide a sustainable cost-base for tailings management. Changes were also necessary to support the Magnetite Expansion Project (MEP) that was destined to be commissioned in October 2013. A feasibility study was performed with Golder Associates to understand the technical and commercial influences and provide a capital estimate for several options. The selected option from the study was a redesign of the current dual discharge TSF to a perimeter discharge, central decant (PDCD) design.
Application of Nalco WaterShed polymer at the Big Baron Pit (Verdoornet al. 2018) revealed the technology would greatly assist in the successful conversion of the TSF to a PDCD configuration. Expectation was high that WaterShed polymer treatment would allow greater beach angle control, improved water recovery, and a reduction in surface water pooling across the TSF with water pooling concentrated around the central decant allowing for efficient removal prior to loss via evaporation or seepage.
A conceptual design for the polymer tailings dewatering application was developed in collaboration with Nalco Water and dosing commenced in October 2013. Due to unknown risks associated with dewatering magnetite tailings, the project was split into two stages, namely, phase 1: a proof of concept trial to establish the applicability of Watershed on the magnetite tailings prior to commissioning of MEP; and phase 2: fully operationalise the PDCD configuration.
Golder was engaged to develop a life-of-mine plan for the TSF at SMR that could be safely operated to a planned final height of RL 199 m. Throughout 2013 and 2014, design and construction occurred to convert the Mag TSF to a PDCD facility. A master plan was developed to manage tailings storage for five years from March 2014, referred to as the ‘First 5 Year Plan’. This involved six wall raises that would eventually fill the three voids near the western embankment and bring the height of the TSF to RL 172 m.
The civil concept selected was based on an alternatives assessment that presented three options. SIMEC Mining chose the lowest cost approach of filling the voids with WaterShed polymer treated tailings to provide a base for 3 m wall raises upstream. Strict deposition and water recovery models were followed to ensure sufficient dewatering and the subsequent drying of the tailings layers. There was also extensive test work completed prior to each of the individual embankment raises to ensure that the dewatered tailings had the appropriate density and strength properties to support the raises before commencing with the lifts.
During the first five years of operation, water recovery was around 60% and the volume utilisation was in line with the deposition model. The high percentage of water recovered enabled the processing plant to reach its new design capability, reduce significant downtime due to water availability and provide the mining operations with sufficient water for dust suppression. The second five-year plan is currently being finalised and progress is consistent with the tailings deposition and the dewatering model.