基于半监督学习的手势识别模型

Meiping Tao, Li Ma
{"title":"基于半监督学习的手势识别模型","authors":"Meiping Tao, Li Ma","doi":"10.1109/IHMSC.2015.230","DOIUrl":null,"url":null,"abstract":"The traditional vision based hand gesture recognition technology requires a lot of light environment and backgrounds. Focused on these above problems, this paper presents a new hand gesture recognition model, in which, the unsupervised sparse auto-encoder neural network model is applied to train the image patches, in order to extract the edge feature that is the weight, and the pooled features are used as the input of the classifier for classification. The fine turning for the parameter of the entire net is to improve the classification accuracy finally.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"41 1","pages":"43-46"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hand Gesture Recognition Model Based on Semi-supervised Learning\",\"authors\":\"Meiping Tao, Li Ma\",\"doi\":\"10.1109/IHMSC.2015.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional vision based hand gesture recognition technology requires a lot of light environment and backgrounds. Focused on these above problems, this paper presents a new hand gesture recognition model, in which, the unsupervised sparse auto-encoder neural network model is applied to train the image patches, in order to extract the edge feature that is the weight, and the pooled features are used as the input of the classifier for classification. The fine turning for the parameter of the entire net is to improve the classification accuracy finally.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"41 1\",\"pages\":\"43-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

传统的基于视觉的手势识别技术需要大量的光环境和背景。针对上述问题,本文提出了一种新的手势识别模型,该模型采用无监督稀疏自编码器神经网络模型对图像patch进行训练,提取边缘特征即权重,并将聚类特征作为分类器的输入进行分类。对整个网络的参数进行微调,最终是为了提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hand Gesture Recognition Model Based on Semi-supervised Learning
The traditional vision based hand gesture recognition technology requires a lot of light environment and backgrounds. Focused on these above problems, this paper presents a new hand gesture recognition model, in which, the unsupervised sparse auto-encoder neural network model is applied to train the image patches, in order to extract the edge feature that is the weight, and the pooled features are used as the input of the classifier for classification. The fine turning for the parameter of the entire net is to improve the classification accuracy finally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信