{"title":"一类变参数调和函数在卷积阶上的一致性","authors":"G. Sâlâgean, Á. O. Páll-Szabó","doi":"10.24193/subbmath.2023.2.04","DOIUrl":null,"url":null,"abstract":"\"Making use of a modi ed Hadamard product or convolution of harmonic functions with varying arguments, combined with an integral operator, we study when these functions belong to a given class. Following an idea of U. Bednarz and J. Sokol we de ne the order of convolution consistence of three classes of functions and determine it for certain classes of harmonic functions with varying arguments de ned using a convolution operator.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the order of convolution consistence of certain classes of harmonic functions with varying arguments\",\"authors\":\"G. Sâlâgean, Á. O. Páll-Szabó\",\"doi\":\"10.24193/subbmath.2023.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Making use of a modi ed Hadamard product or convolution of harmonic functions with varying arguments, combined with an integral operator, we study when these functions belong to a given class. Following an idea of U. Bednarz and J. Sokol we de ne the order of convolution consistence of three classes of functions and determine it for certain classes of harmonic functions with varying arguments de ned using a convolution operator.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the order of convolution consistence of certain classes of harmonic functions with varying arguments
"Making use of a modi ed Hadamard product or convolution of harmonic functions with varying arguments, combined with an integral operator, we study when these functions belong to a given class. Following an idea of U. Bednarz and J. Sokol we de ne the order of convolution consistence of three classes of functions and determine it for certain classes of harmonic functions with varying arguments de ned using a convolution operator."