求解由有限维边界条件定义的更新方程周期边值问题的配点法的收敛性

IF 0.9 Q3 MATHEMATICS, APPLIED
Alessia Andò
{"title":"求解由有限维边界条件定义的更新方程周期边值问题的配点法的收敛性","authors":"Alessia Andò","doi":"10.1002/cmm4.1190","DOIUrl":null,"url":null,"abstract":"<p>The problem of computing periodic solutions can be expressed as a boundary value problem and solved numerically via piecewise collocation. Here, we extend to renewal equations the corresponding method for retarded functional differential equations in (K. Engelborghs et al., <i>SIAM J Sci Comput</i>., 22 (2001), pp. 1593–1609). The theoretical proof of the convergence of the method has been recently provided in (A. Andò and D. Breda, <i>SIAM J Numer Anal</i>., 58 (2020), pp. 3010–3039) for retarded functional differential equations and in (A. Andò and D. Breda, submitted in 2021) for renewal equations and consists in both cases in applying the abstract framework in (S. Maset, <i>Numer Math</i>., 133 (2016), pp. 525–555) to a reformulation of the boundary value problem featuring an infinite-dimensional boundary condition. We show that, in the renewal case, the proof can also be carried out and even simplified when considering the standard formulation, defined by boundary conditions of finite dimension.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1190","citationCount":"5","resultStr":"{\"title\":\"Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions\",\"authors\":\"Alessia Andò\",\"doi\":\"10.1002/cmm4.1190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of computing periodic solutions can be expressed as a boundary value problem and solved numerically via piecewise collocation. Here, we extend to renewal equations the corresponding method for retarded functional differential equations in (K. Engelborghs et al., <i>SIAM J Sci Comput</i>., 22 (2001), pp. 1593–1609). The theoretical proof of the convergence of the method has been recently provided in (A. Andò and D. Breda, <i>SIAM J Numer Anal</i>., 58 (2020), pp. 3010–3039) for retarded functional differential equations and in (A. Andò and D. Breda, submitted in 2021) for renewal equations and consists in both cases in applying the abstract framework in (S. Maset, <i>Numer Math</i>., 133 (2016), pp. 525–555) to a reformulation of the boundary value problem featuring an infinite-dimensional boundary condition. We show that, in the renewal case, the proof can also be carried out and even simplified when considering the standard formulation, defined by boundary conditions of finite dimension.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1190\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

周期解的计算问题可以表示为边值问题,并通过分段配置的方法进行数值求解。在此,我们将(K. Engelborghs et al., SIAM J Sci computer)中迟滞泛函微分方程的相应方法推广到更新方程。, 22(2001),第1593-1609页)。该方法收敛性的理论证明最近已在(A. Andò和D. Breda, SIAM J number Anal)中提供。(A. Andò and D. Breda,提交于2021年)用于更新方程,并在这两种情况下应用(S. Maset, number Math)中的抽象框架。, 133 (2016), pp. 525-555)到具有无限维边界条件的边值问题的重新表述。我们证明,在更新的情况下,当考虑由有限维边界条件定义的标准公式时,证明也可以进行甚至简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions

The problem of computing periodic solutions can be expressed as a boundary value problem and solved numerically via piecewise collocation. Here, we extend to renewal equations the corresponding method for retarded functional differential equations in (K. Engelborghs et al., SIAM J Sci Comput., 22 (2001), pp. 1593–1609). The theoretical proof of the convergence of the method has been recently provided in (A. Andò and D. Breda, SIAM J Numer Anal., 58 (2020), pp. 3010–3039) for retarded functional differential equations and in (A. Andò and D. Breda, submitted in 2021) for renewal equations and consists in both cases in applying the abstract framework in (S. Maset, Numer Math., 133 (2016), pp. 525–555) to a reformulation of the boundary value problem featuring an infinite-dimensional boundary condition. We show that, in the renewal case, the proof can also be carried out and even simplified when considering the standard formulation, defined by boundary conditions of finite dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信