{"title":"fr<s:1>切特泛函方程推广的稳定性","authors":"Renata Malejki","doi":"10.1515/AUPCSM-2015-0006","DOIUrl":null,"url":null,"abstract":"Abstract We prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"46 1","pages":"69 - 79"},"PeriodicalIF":0.1000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Stability of a generalization of the Fréchet functional equation\",\"authors\":\"Renata Malejki\",\"doi\":\"10.1515/AUPCSM-2015-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"46 1\",\"pages\":\"69 - 79\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/AUPCSM-2015-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/AUPCSM-2015-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability of a generalization of the Fréchet functional equation
Abstract We prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.