{"title":"关于$ \\delta $ -约简的规范概念的类型化$ \\lambda $ -项的规范形式的$ \\beta\\delta $ -唯一的一个充分必要条件","authors":"L. Budaghyan, D. Grigoryan, L. Torosyan","doi":"10.46991/pysu:a/2019.53.1.028","DOIUrl":null,"url":null,"abstract":"In this paper the canonical notion of $ \\delta $-reduction is considered. Typed $ \\lambda $-terms use variables of any order and constants of order $ \\leq 1 $, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of $ \\delta $-reduction is the notion of $ \\delta $-reduction that is used in the implementation of functional programming languages. It is shown that for canonical notion of $ \\delta $-reduction SI-property is the necessary and sufficient condition for the uniqueness of $ \\beta\\delta $-normal form of typed $ \\lambda $-terms.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NECESSARY AND SUFFICIENT CONDITION FOR THE UNIQUENESS OF $ \\\\beta\\\\delta $-NORMAL FORM OF TYPED $ \\\\lambda $-TERMS FOR THE CANONICAL NOTION OF $ \\\\delta $-REDUCTION\",\"authors\":\"L. Budaghyan, D. Grigoryan, L. Torosyan\",\"doi\":\"10.46991/pysu:a/2019.53.1.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the canonical notion of $ \\\\delta $-reduction is considered. Typed $ \\\\lambda $-terms use variables of any order and constants of order $ \\\\leq 1 $, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of $ \\\\delta $-reduction is the notion of $ \\\\delta $-reduction that is used in the implementation of functional programming languages. It is shown that for canonical notion of $ \\\\delta $-reduction SI-property is the necessary and sufficient condition for the uniqueness of $ \\\\beta\\\\delta $-normal form of typed $ \\\\lambda $-terms.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.1.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.1.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A NECESSARY AND SUFFICIENT CONDITION FOR THE UNIQUENESS OF $ \beta\delta $-NORMAL FORM OF TYPED $ \lambda $-TERMS FOR THE CANONICAL NOTION OF $ \delta $-REDUCTION
In this paper the canonical notion of $ \delta $-reduction is considered. Typed $ \lambda $-terms use variables of any order and constants of order $ \leq 1 $, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of $ \delta $-reduction is the notion of $ \delta $-reduction that is used in the implementation of functional programming languages. It is shown that for canonical notion of $ \delta $-reduction SI-property is the necessary and sufficient condition for the uniqueness of $ \beta\delta $-normal form of typed $ \lambda $-terms.