M. Kamel, Jassim Mohammed Dahr, Wid Akeel Awadh, Ali Salah Alasady, Alaa Khalaf Hamoud, Aqeel Majeed Humadi, I. A. Najm
{"title":"有监督/无监督机器学习算法与特征选择方法预测学生成绩的比较研究","authors":"M. Kamel, Jassim Mohammed Dahr, Wid Akeel Awadh, Ali Salah Alasady, Alaa Khalaf Hamoud, Aqeel Majeed Humadi, I. A. Najm","doi":"10.1504/ijdmmm.2023.10055032","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":43061,"journal":{"name":"International Journal of Data Mining Modelling and Management","volume":"11 1","pages":"393-409"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Supervised/Unsupervised Machine Learning Algorithms with Feature Selection Approaches to Predict Student Performance\",\"authors\":\"M. Kamel, Jassim Mohammed Dahr, Wid Akeel Awadh, Ali Salah Alasady, Alaa Khalaf Hamoud, Aqeel Majeed Humadi, I. A. Najm\",\"doi\":\"10.1504/ijdmmm.2023.10055032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":43061,\"journal\":{\"name\":\"International Journal of Data Mining Modelling and Management\",\"volume\":\"11 1\",\"pages\":\"393-409\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining Modelling and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmmm.2023.10055032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Modelling and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdmmm.2023.10055032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
Facilitating transformation from data to information to knowledge is paramount for organisations. Companies are flooded with data and conflicting information, but with limited real usable knowledge. However, rarely should a process be looked at from limited angles or in parts. Isolated islands of data mining, modelling and management (DMMM) should be connected. IJDMMM highlightes integration of DMMM, statistics/machine learning/databases, each element of data chain management, types of information, algorithms in software; from data pre-processing to post-processing; between theory and applications. Topics covered include: -Artificial intelligence- Biomedical science- Business analytics/intelligence, process modelling- Computer science, database management systems- Data management, mining, modelling, warehousing- Engineering- Environmental science, environment (ecoinformatics)- Information systems/technology, telecommunications/networking- Management science, operations research, mathematics/statistics- Social sciences- Business/economics, (computational) finance- Healthcare, medicine, pharmaceuticals- (Computational) chemistry, biology (bioinformatics)- Sustainable mobility systems, intelligent transportation systems- National security