802.11n wlan的自动配置

Mustafa Y. Arslan, K. Pelechrinis, Ioannis Broustis, S. Krishnamurthy, Sateesh Addepalli, K. Papagiannaki
{"title":"802.11n wlan的自动配置","authors":"Mustafa Y. Arslan, K. Pelechrinis, Ioannis Broustis, S. Krishnamurthy, Sateesh Addepalli, K. Papagiannaki","doi":"10.1145/1921168.1921204","DOIUrl":null,"url":null,"abstract":"Channel Bonding (CB) combines two adjacent frequency bands to form a new, wider band to facilitate high data rate transmissions in MIMO-based 802.11n networks. However, the use of a wider band with CB can exacerbate interference effects. Furthermore, CB does not always provide benefits in interference-free settings, and can even degrade performance in some cases. We conduct an in-depth, experimental study to understand the implications of CB. Based on this study we design an auto-configuration framework, ACORN, for enterprise 802.11n WLANs. ACORN integrates the functions of user association and channel allocation, since our study reveals that they are tightly coupled when CB is used. We show that the channel allocation problem with the constraints of CB is NP-complete. Thus, ACORN uses an algorithm that provides a worst case approximation ratio of [EQUATION] with Δ being the maximum node degree in the network. We implement ACORN on our 802.11n testbed. Our experiments show that ACORN (i) outperforms previous approaches that are agnostic to CB constraints; it provides per-AP throughput gains from 1.5x to 6x and (ii) in practice, its channel allocation module achieves an approximation ratio much better than [EQUATION].","PeriodicalId":20688,"journal":{"name":"Proceedings of The 6th International Conference on Innovation in Science and Technology","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Auto-configuration of 802.11n WLANs\",\"authors\":\"Mustafa Y. Arslan, K. Pelechrinis, Ioannis Broustis, S. Krishnamurthy, Sateesh Addepalli, K. Papagiannaki\",\"doi\":\"10.1145/1921168.1921204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel Bonding (CB) combines two adjacent frequency bands to form a new, wider band to facilitate high data rate transmissions in MIMO-based 802.11n networks. However, the use of a wider band with CB can exacerbate interference effects. Furthermore, CB does not always provide benefits in interference-free settings, and can even degrade performance in some cases. We conduct an in-depth, experimental study to understand the implications of CB. Based on this study we design an auto-configuration framework, ACORN, for enterprise 802.11n WLANs. ACORN integrates the functions of user association and channel allocation, since our study reveals that they are tightly coupled when CB is used. We show that the channel allocation problem with the constraints of CB is NP-complete. Thus, ACORN uses an algorithm that provides a worst case approximation ratio of [EQUATION] with Δ being the maximum node degree in the network. We implement ACORN on our 802.11n testbed. Our experiments show that ACORN (i) outperforms previous approaches that are agnostic to CB constraints; it provides per-AP throughput gains from 1.5x to 6x and (ii) in practice, its channel allocation module achieves an approximation ratio much better than [EQUATION].\",\"PeriodicalId\":20688,\"journal\":{\"name\":\"Proceedings of The 6th International Conference on Innovation in Science and Technology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Conference on Innovation in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1921168.1921204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Conference on Innovation in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1921168.1921204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

信道绑定(CB)将两个相邻的频带结合在一起,形成一个新的更宽的频带,以促进基于mimo的802.11n网络中的高数据速率传输。然而,使用更宽的波段与CB会加剧干扰效应。此外,CB并不总是在无干扰设置中提供好处,在某些情况下甚至会降低性能。我们进行了深入的实验研究,以了解CB的含义。在此基础上,我们设计了一个用于企业802.11n wlan的自动配置框架ACORN。ACORN集成了用户关联和信道分配的功能,因为我们的研究表明,当使用CB时,它们是紧密耦合的。我们证明了具有CB约束的信道分配问题是np完全的。因此,ACORN使用的算法提供最坏情况近似比为[EQUATION],其中Δ为网络中的最大节点度。我们在802.11n测试台上实现了ACORN。我们的实验表明,ACORN (i)优于以前对CB约束不可知的方法;它提供了从1.5倍到6倍的每个ap吞吐量增益,并且(ii)在实践中,它的信道分配模块实现了比[等式]更好的近似比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-configuration of 802.11n WLANs
Channel Bonding (CB) combines two adjacent frequency bands to form a new, wider band to facilitate high data rate transmissions in MIMO-based 802.11n networks. However, the use of a wider band with CB can exacerbate interference effects. Furthermore, CB does not always provide benefits in interference-free settings, and can even degrade performance in some cases. We conduct an in-depth, experimental study to understand the implications of CB. Based on this study we design an auto-configuration framework, ACORN, for enterprise 802.11n WLANs. ACORN integrates the functions of user association and channel allocation, since our study reveals that they are tightly coupled when CB is used. We show that the channel allocation problem with the constraints of CB is NP-complete. Thus, ACORN uses an algorithm that provides a worst case approximation ratio of [EQUATION] with Δ being the maximum node degree in the network. We implement ACORN on our 802.11n testbed. Our experiments show that ACORN (i) outperforms previous approaches that are agnostic to CB constraints; it provides per-AP throughput gains from 1.5x to 6x and (ii) in practice, its channel allocation module achieves an approximation ratio much better than [EQUATION].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信