快速和简单的解决方案的Blotto游戏

Oper. Res. Pub Date : 2022-03-18 DOI:10.1287/opre.2022.2261
Soheil Behnezhad, Sina Dehghani, M. Derakhshan, M. Hajiaghayi, Saeed Seddighin
{"title":"快速和简单的解决方案的Blotto游戏","authors":"Soheil Behnezhad, Sina Dehghani, M. Derakhshan, M. Hajiaghayi, Saeed Seddighin","doi":"10.1287/opre.2022.2261","DOIUrl":null,"url":null,"abstract":"The Colonel Blotto game (initially introduced by Borel in 1921) is commonly used for analyzing a wide range of applications from the U.S.Ppresidential election to innovative technology competitions to advertising, sports, and politics. After around a century Ahmadinejad et al. provided the first polynomial-time algorithm for computing the Nash equilibria in Colonel Blotto games. However, their algorithm consists of an exponential-size LP solved by the ellipsoid method, which is highly impractical. In “Fast and Simple Solutions of Blotto Games,” Behnezhad, Dehghani, Derakhshan, Hajighayi, and Seddighin provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. They use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. They further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"193 1","pages":"506-516"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast and Simple Solutions of Blotto Games\",\"authors\":\"Soheil Behnezhad, Sina Dehghani, M. Derakhshan, M. Hajiaghayi, Saeed Seddighin\",\"doi\":\"10.1287/opre.2022.2261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Colonel Blotto game (initially introduced by Borel in 1921) is commonly used for analyzing a wide range of applications from the U.S.Ppresidential election to innovative technology competitions to advertising, sports, and politics. After around a century Ahmadinejad et al. provided the first polynomial-time algorithm for computing the Nash equilibria in Colonel Blotto games. However, their algorithm consists of an exponential-size LP solved by the ellipsoid method, which is highly impractical. In “Fast and Simple Solutions of Blotto Games,” Behnezhad, Dehghani, Derakhshan, Hajighayi, and Seddighin provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. They use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. They further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"193 1\",\"pages\":\"506-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2022.2261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Blotto上校游戏(最初由Borel于1921年推出)通常用于分析广泛的应用,从美国总统选举到创新技术竞赛,再到广告,体育和政治。大约一个世纪之后,Ahmadinejad等人提出了第一个计算Colonel Blotto博弈纳什均衡的多项式时间算法。然而,他们的算法是由一个指数大小的LP由椭球体方法求解,这是非常不切实际的。在“Blotto游戏的快速和简单解决方案”中,Behnezhad, Dehghani, Derakhshan, Hajighayi和Seddighin使用线性扩展技术为Colonel Blotto游戏提供了第一个多项式大小的LP最优策略公式。他们使用这种多项式大小的LP来提供一种更简单、更快速的算法来寻找上校布托游戏的最佳策略。他们进一步证明了这种表示是渐近紧密的,这意味着不存在其他约束较少的策略空间的线性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Simple Solutions of Blotto Games
The Colonel Blotto game (initially introduced by Borel in 1921) is commonly used for analyzing a wide range of applications from the U.S.Ppresidential election to innovative technology competitions to advertising, sports, and politics. After around a century Ahmadinejad et al. provided the first polynomial-time algorithm for computing the Nash equilibria in Colonel Blotto games. However, their algorithm consists of an exponential-size LP solved by the ellipsoid method, which is highly impractical. In “Fast and Simple Solutions of Blotto Games,” Behnezhad, Dehghani, Derakhshan, Hajighayi, and Seddighin provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. They use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. They further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信