心肌梗死混合优化深度学习模型的设计与开发

Q2 Decision Sciences
Shamal S. Bulbule, Shridevi Soma
{"title":"心肌梗死混合优化深度学习模型的设计与开发","authors":"Shamal S. Bulbule, Shridevi Soma","doi":"10.4018/ijskd.313589","DOIUrl":null,"url":null,"abstract":"Myocardial infarction is the most hazardous cardiovascular disease for humans; generally, it is acknowledged as a heart attack, which may result in death. Thus, rapid and precise detection of myocardial infarction is essential to reduce the mortality rate. This paper proposes the Taylor-enhanced invasive weed sine cosine optimization algorithm-based deep convolutional neural network (Taylor IIWSCOA-enabled DCNN) model to classify myocardial infarction. Here, the DCNN classifier is used to predict and categorize myocardial infarction, and the classifier is tuned by the Taylor IIWSCOA to attain superior efficiency. The Taylor IIWSCOA is designed by integrating SCA, IIWO approach, and the Taylor series. The proposed Taylor IIWSCOA-based DCNN approach outperforms other conventional approaches with an accuracy of 0.9412, sensitivity of 0.9535, and specificity of 0.9485.","PeriodicalId":53530,"journal":{"name":"International Journal of Sociotechnology and Knowledge Development","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of Hybrid Optimization-Enabled Deep Learning Model for Myocardial Infarction\",\"authors\":\"Shamal S. Bulbule, Shridevi Soma\",\"doi\":\"10.4018/ijskd.313589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myocardial infarction is the most hazardous cardiovascular disease for humans; generally, it is acknowledged as a heart attack, which may result in death. Thus, rapid and precise detection of myocardial infarction is essential to reduce the mortality rate. This paper proposes the Taylor-enhanced invasive weed sine cosine optimization algorithm-based deep convolutional neural network (Taylor IIWSCOA-enabled DCNN) model to classify myocardial infarction. Here, the DCNN classifier is used to predict and categorize myocardial infarction, and the classifier is tuned by the Taylor IIWSCOA to attain superior efficiency. The Taylor IIWSCOA is designed by integrating SCA, IIWO approach, and the Taylor series. The proposed Taylor IIWSCOA-based DCNN approach outperforms other conventional approaches with an accuracy of 0.9412, sensitivity of 0.9535, and specificity of 0.9485.\",\"PeriodicalId\":53530,\"journal\":{\"name\":\"International Journal of Sociotechnology and Knowledge Development\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sociotechnology and Knowledge Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.313589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sociotechnology and Knowledge Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.313589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

心肌梗死是人类最危险的心血管疾病;一般来说,它被认为是心脏病发作,可能导致死亡。因此,快速、准确地检测心肌梗死对于降低死亡率至关重要。本文提出了基于Taylor增强入侵杂草正弦余弦优化算法的深度卷积神经网络(Taylor IIWSCOA-enabled DCNN)模型对心肌梗死进行分类。在这里,DCNN分类器被用来预测和分类心肌梗死,并且分类器被Taylor IIWSCOA调整以获得更高的效率。泰勒IIWSCOA是通过集成SCA、IIWO方法和泰勒系列而设计的。提出的基于Taylor iiwscoa的DCNN方法优于其他传统方法,准确率为0.9412,灵敏度为0.9535,特异性为0.9485。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Development of Hybrid Optimization-Enabled Deep Learning Model for Myocardial Infarction
Myocardial infarction is the most hazardous cardiovascular disease for humans; generally, it is acknowledged as a heart attack, which may result in death. Thus, rapid and precise detection of myocardial infarction is essential to reduce the mortality rate. This paper proposes the Taylor-enhanced invasive weed sine cosine optimization algorithm-based deep convolutional neural network (Taylor IIWSCOA-enabled DCNN) model to classify myocardial infarction. Here, the DCNN classifier is used to predict and categorize myocardial infarction, and the classifier is tuned by the Taylor IIWSCOA to attain superior efficiency. The Taylor IIWSCOA is designed by integrating SCA, IIWO approach, and the Taylor series. The proposed Taylor IIWSCOA-based DCNN approach outperforms other conventional approaches with an accuracy of 0.9412, sensitivity of 0.9535, and specificity of 0.9485.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Sociotechnology and Knowledge Development
International Journal of Sociotechnology and Knowledge Development Decision Sciences-Information Systems and Management
CiteScore
4.20
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信