基上稳定动力同伦群中的朴素Milnor-Witt k理论关系

IF 0.5 Q3 MATHEMATICS
A. Druzhinin
{"title":"基上稳定动力同伦群中的朴素Milnor-Witt k理论关系","authors":"A. Druzhinin","doi":"10.2140/akt.2021.6.651","DOIUrl":null,"url":null,"abstract":"We construct the homomorphism of presheaves ${\\mathrm{K}}^\\mathrm{MW}_* \\to {\\pi}^{*,*}$ over an arbitrary base scheme $S$, where $\\mathrm{K}^\\mathrm{MW}$ is the (naive) Milnor-Witt K-theory presheave. \nAlso we discuss some partly alternative proof (or proofs) of the isomorphism of sheaves $\\unKMW_n\\simeq \\underline{\\pi}^{n,n}_s$, $n\\in \\mathbb Z$, over a filed $k$ originally proved in \\cite{M02} and \\cite{M-A1Top}.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"60 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The naive Milnor–Witt K-theory relations in the\\nstable motivic homotopy groups over a base\",\"authors\":\"A. Druzhinin\",\"doi\":\"10.2140/akt.2021.6.651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct the homomorphism of presheaves ${\\\\mathrm{K}}^\\\\mathrm{MW}_* \\\\to {\\\\pi}^{*,*}$ over an arbitrary base scheme $S$, where $\\\\mathrm{K}^\\\\mathrm{MW}$ is the (naive) Milnor-Witt K-theory presheave. \\nAlso we discuss some partly alternative proof (or proofs) of the isomorphism of sheaves $\\\\unKMW_n\\\\simeq \\\\underline{\\\\pi}^{n,n}_s$, $n\\\\in \\\\mathbb Z$, over a filed $k$ originally proved in \\\\cite{M02} and \\\\cite{M-A1Top}.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The naive Milnor–Witt K-theory relations in the stable motivic homotopy groups over a base
We construct the homomorphism of presheaves ${\mathrm{K}}^\mathrm{MW}_* \to {\pi}^{*,*}$ over an arbitrary base scheme $S$, where $\mathrm{K}^\mathrm{MW}$ is the (naive) Milnor-Witt K-theory presheave. Also we discuss some partly alternative proof (or proofs) of the isomorphism of sheaves $\unKMW_n\simeq \underline{\pi}^{n,n}_s$, $n\in \mathbb Z$, over a filed $k$ originally proved in \cite{M02} and \cite{M-A1Top}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信