Archana Tikayat Ray, Anirudh Prabhakara Bhat, Ryan T. White, Van Minh Nguyen, Olivia J. Pinon Fischer, D. Mavris
{"title":"研究航空安全分析生成语言模型的潜力:使用航空安全报告系统(ASRS)的案例研究和见解","authors":"Archana Tikayat Ray, Anirudh Prabhakara Bhat, Ryan T. White, Van Minh Nguyen, Olivia J. Pinon Fischer, D. Mavris","doi":"10.3390/aerospace10090770","DOIUrl":null,"url":null,"abstract":"This research investigates the potential application of generative language models, especially ChatGPT, in aviation safety analysis as a means to enhance the efficiency of safety analyses and accelerate the time it takes to process incident reports. In particular, ChatGPT was leveraged to generate incident synopses from narratives, which were subsequently compared with ground-truth synopses from the Aviation Safety Reporting System (ASRS) dataset. The comparison was facilitated by using embeddings from Large Language Models (LLMs), with aeroBERT demonstrating the highest similarity due to its aerospace-specific fine-tuning. A positive correlation was observed between the synopsis length and its cosine similarity. In a subsequent phase, human factors issues involved in incidents, as identified by ChatGPT, were compared to human factors issues identified by safety analysts. The precision was found to be 0.61, with ChatGPT demonstrating a cautious approach toward attributing human factors issues. Finally, the model was utilized to execute an evaluation of accountability. As no dedicated ground-truth column existed for this task, a manual evaluation was conducted to compare the quality of outputs provided by ChatGPT to the ground truths provided by safety analysts. This study discusses the advantages and pitfalls of generative language models in the context of aviation safety analysis and proposes a human-in-the-loop system to ensure responsible and effective utilization of such models, leading to continuous improvement and fostering a collaborative approach in the aviation safety domain.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"13 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examining the Potential of Generative Language Models for Aviation Safety Analysis: Case Study and Insights Using the Aviation Safety Reporting System (ASRS)\",\"authors\":\"Archana Tikayat Ray, Anirudh Prabhakara Bhat, Ryan T. White, Van Minh Nguyen, Olivia J. Pinon Fischer, D. Mavris\",\"doi\":\"10.3390/aerospace10090770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the potential application of generative language models, especially ChatGPT, in aviation safety analysis as a means to enhance the efficiency of safety analyses and accelerate the time it takes to process incident reports. In particular, ChatGPT was leveraged to generate incident synopses from narratives, which were subsequently compared with ground-truth synopses from the Aviation Safety Reporting System (ASRS) dataset. The comparison was facilitated by using embeddings from Large Language Models (LLMs), with aeroBERT demonstrating the highest similarity due to its aerospace-specific fine-tuning. A positive correlation was observed between the synopsis length and its cosine similarity. In a subsequent phase, human factors issues involved in incidents, as identified by ChatGPT, were compared to human factors issues identified by safety analysts. The precision was found to be 0.61, with ChatGPT demonstrating a cautious approach toward attributing human factors issues. Finally, the model was utilized to execute an evaluation of accountability. As no dedicated ground-truth column existed for this task, a manual evaluation was conducted to compare the quality of outputs provided by ChatGPT to the ground truths provided by safety analysts. This study discusses the advantages and pitfalls of generative language models in the context of aviation safety analysis and proposes a human-in-the-loop system to ensure responsible and effective utilization of such models, leading to continuous improvement and fostering a collaborative approach in the aviation safety domain.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090770\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090770","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Examining the Potential of Generative Language Models for Aviation Safety Analysis: Case Study and Insights Using the Aviation Safety Reporting System (ASRS)
This research investigates the potential application of generative language models, especially ChatGPT, in aviation safety analysis as a means to enhance the efficiency of safety analyses and accelerate the time it takes to process incident reports. In particular, ChatGPT was leveraged to generate incident synopses from narratives, which were subsequently compared with ground-truth synopses from the Aviation Safety Reporting System (ASRS) dataset. The comparison was facilitated by using embeddings from Large Language Models (LLMs), with aeroBERT demonstrating the highest similarity due to its aerospace-specific fine-tuning. A positive correlation was observed between the synopsis length and its cosine similarity. In a subsequent phase, human factors issues involved in incidents, as identified by ChatGPT, were compared to human factors issues identified by safety analysts. The precision was found to be 0.61, with ChatGPT demonstrating a cautious approach toward attributing human factors issues. Finally, the model was utilized to execute an evaluation of accountability. As no dedicated ground-truth column existed for this task, a manual evaluation was conducted to compare the quality of outputs provided by ChatGPT to the ground truths provided by safety analysts. This study discusses the advantages and pitfalls of generative language models in the context of aviation safety analysis and proposes a human-in-the-loop system to ensure responsible and effective utilization of such models, leading to continuous improvement and fostering a collaborative approach in the aviation safety domain.