具有混合部分黏度的三维Hall-MHD系统光滑解的整体存在性

Pub Date : 2021-06-01 DOI:10.4208/jpde.v34.n1.1
Yuzhu Wang
{"title":"具有混合部分黏度的三维Hall-MHD系统光滑解的整体存在性","authors":"Yuzhu Wang","doi":"10.4208/jpde.v34.n1.1","DOIUrl":null,"url":null,"abstract":"We investigate the global existence of smooth solutions to the three dimensional generalized Hall-MHD system with mixed partial viscosity in this work. The diffusion of mixed partial viscosity is weaker than that of full viscosity, which cases new difficulty in proving global smooth solutions. Moreover, Hall term heightens the level of nonlinearity of the standard MHD system. Global smooth solutions are established by using energy method and the bootstrapping argument, provided that the initial data is enough small. AMS Subject Classifications: 76D03, 76W05 Chinese Library Classifications: O175.29","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence of Smooth Solutions to Three Dimensional Hall-MHD System with Mixed Partial Viscosity\",\"authors\":\"Yuzhu Wang\",\"doi\":\"10.4208/jpde.v34.n1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the global existence of smooth solutions to the three dimensional generalized Hall-MHD system with mixed partial viscosity in this work. The diffusion of mixed partial viscosity is weaker than that of full viscosity, which cases new difficulty in proving global smooth solutions. Moreover, Hall term heightens the level of nonlinearity of the standard MHD system. Global smooth solutions are established by using energy method and the bootstrapping argument, provided that the initial data is enough small. AMS Subject Classifications: 76D03, 76W05 Chinese Library Classifications: O175.29\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v34.n1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v34.n1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有混合部分黏度的三维广义Hall-MHD系统光滑解的整体存在性。混合部分黏度的扩散弱于全黏度,这给证明全局光滑解带来了新的困难。此外,霍尔项提高了标准MHD系统的非线性程度。在初始数据足够小的情况下,利用能量法和自举参数建立全局光滑解。AMS学科分类:76D03, 76W05中文图书馆分类:O175.29
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Existence of Smooth Solutions to Three Dimensional Hall-MHD System with Mixed Partial Viscosity
We investigate the global existence of smooth solutions to the three dimensional generalized Hall-MHD system with mixed partial viscosity in this work. The diffusion of mixed partial viscosity is weaker than that of full viscosity, which cases new difficulty in proving global smooth solutions. Moreover, Hall term heightens the level of nonlinearity of the standard MHD system. Global smooth solutions are established by using energy method and the bootstrapping argument, provided that the initial data is enough small. AMS Subject Classifications: 76D03, 76W05 Chinese Library Classifications: O175.29
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信