Kähler几乎非负曲率流形

IF 2 1区 数学
Man-Chun Lee, Luen-Fai Tam
{"title":"Kähler几乎非负曲率流形","authors":"Man-Chun Lee, Luen-Fai Tam","doi":"10.2140/gt.2021.25.1979","DOIUrl":null,"url":null,"abstract":"In this paper, we construct local and global solutions to the Kahler-Ricci flow from a non-collapsed Kahler manifold with curvature bounded from below. Combines with the mollification technique of McLeod-Simon-Topping, we show that the Gromov-Hausdorff limit of sequence of complete noncompact non-collapsed Kahler manifolds with orthogonal bisectional curvature and Ricci curvature bounded from below is homeomorphic to a complex manifold. We also use it to study the complex structure of complete Kahler manifolds with nonnegative orthogonal bisectional curvature, nonnegative Ricci curvature and maximal volume growth.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Kähler manifolds with almost nonnegative\\ncurvature\",\"authors\":\"Man-Chun Lee, Luen-Fai Tam\",\"doi\":\"10.2140/gt.2021.25.1979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct local and global solutions to the Kahler-Ricci flow from a non-collapsed Kahler manifold with curvature bounded from below. Combines with the mollification technique of McLeod-Simon-Topping, we show that the Gromov-Hausdorff limit of sequence of complete noncompact non-collapsed Kahler manifolds with orthogonal bisectional curvature and Ricci curvature bounded from below is homeomorphic to a complex manifold. We also use it to study the complex structure of complete Kahler manifolds with nonnegative orthogonal bisectional curvature, nonnegative Ricci curvature and maximal volume growth.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.1979\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1979","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文从曲率从下有界的非坍缩Kahler流形出发,构造了Kahler- ricci流的局部解和全局解。结合McLeod-Simon-Topping的缓和技术,证明了具有正交对分曲率和Ricci曲率从下有界的完全非紧非坍缩Kahler流形序列的Gromov-Hausdorff极限同纯于复流形。我们还用它研究了具有非负正交对分曲率、非负Ricci曲率和最大体积增长的完全Kahler流形的复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kähler manifolds with almost nonnegative curvature
In this paper, we construct local and global solutions to the Kahler-Ricci flow from a non-collapsed Kahler manifold with curvature bounded from below. Combines with the mollification technique of McLeod-Simon-Topping, we show that the Gromov-Hausdorff limit of sequence of complete noncompact non-collapsed Kahler manifolds with orthogonal bisectional curvature and Ricci curvature bounded from below is homeomorphic to a complex manifold. We also use it to study the complex structure of complete Kahler manifolds with nonnegative orthogonal bisectional curvature, nonnegative Ricci curvature and maximal volume growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信