{"title":"非局部耦合混沌映射集合中空间模态的选择","authors":"A. Shabunin","doi":"10.18500/0869-6632-2022-30-1-109-124","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to determine regularities of formation of spatial structures in an ensemble of chaotic systems with non-local diffusion couplings and to study how these structures depend on the wave response of the digital filter formed by the ensemble couplings structure. Methods. The study was carried out by numerical simulation of an ensemble of logistic maps, calculation of its typical oscillatory regimes and their spectral analysis. The network was considered as a digital filter with a frequency response depending on the coupling parameters. Correlation between the spatial spectra and the amplitude-frequency response of the coupling filter and the mutual coherence of oscillations when the coupling parameters change were considered. Results. The system of couplings between chaotic maps behaves like a wave filter with selective properties, allowing spatial modes with certain wavelengths to exist and suppressing others. The selection of spatial modes is based on the wave characteristic of the coupling filter, the type of which is determined by the radius and the magnitude of couplings. At strong coupling the wave characteristics for ensembles with local and non-local couplings are qualitatively different, therefore they demonstrate essencially different behavior. Discussion. Using spectral methods for dynamics analysis systems with complex network topologies seems to be a promising approach, especially for research of synchronization and multistability in ensembles of chaotic oscillators and maps. The found regularities generalize the results known for ensembles of maps with local couplings. They also can be applied to ensembles of self-sustained oscillators.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"37 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of spatial modes in an ensemble of non-locally coupled chaotic maps\",\"authors\":\"A. Shabunin\",\"doi\":\"10.18500/0869-6632-2022-30-1-109-124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is to determine regularities of formation of spatial structures in an ensemble of chaotic systems with non-local diffusion couplings and to study how these structures depend on the wave response of the digital filter formed by the ensemble couplings structure. Methods. The study was carried out by numerical simulation of an ensemble of logistic maps, calculation of its typical oscillatory regimes and their spectral analysis. The network was considered as a digital filter with a frequency response depending on the coupling parameters. Correlation between the spatial spectra and the amplitude-frequency response of the coupling filter and the mutual coherence of oscillations when the coupling parameters change were considered. Results. The system of couplings between chaotic maps behaves like a wave filter with selective properties, allowing spatial modes with certain wavelengths to exist and suppressing others. The selection of spatial modes is based on the wave characteristic of the coupling filter, the type of which is determined by the radius and the magnitude of couplings. At strong coupling the wave characteristics for ensembles with local and non-local couplings are qualitatively different, therefore they demonstrate essencially different behavior. Discussion. Using spectral methods for dynamics analysis systems with complex network topologies seems to be a promising approach, especially for research of synchronization and multistability in ensembles of chaotic oscillators and maps. The found regularities generalize the results known for ensembles of maps with local couplings. They also can be applied to ensembles of self-sustained oscillators.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-1-109-124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-1-109-124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Selection of spatial modes in an ensemble of non-locally coupled chaotic maps
Purpose of this work is to determine regularities of formation of spatial structures in an ensemble of chaotic systems with non-local diffusion couplings and to study how these structures depend on the wave response of the digital filter formed by the ensemble couplings structure. Methods. The study was carried out by numerical simulation of an ensemble of logistic maps, calculation of its typical oscillatory regimes and their spectral analysis. The network was considered as a digital filter with a frequency response depending on the coupling parameters. Correlation between the spatial spectra and the amplitude-frequency response of the coupling filter and the mutual coherence of oscillations when the coupling parameters change were considered. Results. The system of couplings between chaotic maps behaves like a wave filter with selective properties, allowing spatial modes with certain wavelengths to exist and suppressing others. The selection of spatial modes is based on the wave characteristic of the coupling filter, the type of which is determined by the radius and the magnitude of couplings. At strong coupling the wave characteristics for ensembles with local and non-local couplings are qualitatively different, therefore they demonstrate essencially different behavior. Discussion. Using spectral methods for dynamics analysis systems with complex network topologies seems to be a promising approach, especially for research of synchronization and multistability in ensembles of chaotic oscillators and maps. The found regularities generalize the results known for ensembles of maps with local couplings. They also can be applied to ensembles of self-sustained oscillators.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.