压缩斐波那契树的极限概率转移矩阵

K. A. Germina
{"title":"压缩斐波那契树的极限概率转移矩阵","authors":"K. A. Germina","doi":"10.12732/IJAM.V31I2.6","DOIUrl":null,"url":null,"abstract":"This paper discusses on the construction of condensed Fibonacci trees and present the Markov chain corresponding to the condensed Fibonacci trees. An n × n finite Markov probability transition matrix for this Markov chain is presented and it is proved that the limiting steady state probabilities are proportional to the first n Fibonacci numbers. AMS Subject Classification: 05C07, 05C38, 05C75, 05C85","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"171 1","pages":"241-249"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE\",\"authors\":\"K. A. Germina\",\"doi\":\"10.12732/IJAM.V31I2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses on the construction of condensed Fibonacci trees and present the Markov chain corresponding to the condensed Fibonacci trees. An n × n finite Markov probability transition matrix for this Markov chain is presented and it is proved that the limiting steady state probabilities are proportional to the first n Fibonacci numbers. AMS Subject Classification: 05C07, 05C38, 05C75, 05C85\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"171 1\",\"pages\":\"241-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/IJAM.V31I2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/IJAM.V31I2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

讨论了压缩斐波那契树的构造,给出了压缩斐波那契树对应的马尔可夫链。给出了该马尔可夫链的一个n × n有限马尔可夫概率转移矩阵,并证明了其极限稳态概率与前n个Fibonacci数成正比。AMS学科分类:05C07、05C38、05C75、05C85
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE
This paper discusses on the construction of condensed Fibonacci trees and present the Markov chain corresponding to the condensed Fibonacci trees. An n × n finite Markov probability transition matrix for this Markov chain is presented and it is proved that the limiting steady state probabilities are proportional to the first n Fibonacci numbers. AMS Subject Classification: 05C07, 05C38, 05C75, 05C85
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信