基于低秩矩阵恢复和贪心双边的高光谱图像去噪方法

Anh Tuan Vuong, Van Ha Tang, L. Ngo
{"title":"基于低秩矩阵恢复和贪心双边的高光谱图像去噪方法","authors":"Anh Tuan Vuong, Van Ha Tang, L. Ngo","doi":"10.1109/RIVF51545.2021.9642145","DOIUrl":null,"url":null,"abstract":"The hyperspectral image (HSI) can provide useful information about the desired objects using spectral, spatial, and band channels. However, the image quality is typically distorted due to the limitations of sensing conditions and hardware operations. Consequently, the HSI is typically contaminated by a mixture noise during the acquisition process, including dead lines, stripes, Gaussian noise and impulse noise. In this paper, we introduce a new denoising model based on low-rank matrix recovery (LRMR), which can effectively remove various kinds of noise in HSI data. The low-rank property of the hyperspectral imagery is exploited by converting a patch of the HSI data from 3-D matrix into a 2-D matrix. The dead lines, stripes, and impulse noise are all modelled as sparse noise. To efficiently remove mixed noise and enhance performance, we develop an iterative algorithm using greedy bilateral technique to solve the optimization problem. To illustrate the proposed method’s efficacy in restoring HSI, both simulated and real-world HSI experiments are conducted.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hyperspectral Image Denoising Approach via Low-Rank Matrix Recovery and Greedy Bilateral\",\"authors\":\"Anh Tuan Vuong, Van Ha Tang, L. Ngo\",\"doi\":\"10.1109/RIVF51545.2021.9642145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hyperspectral image (HSI) can provide useful information about the desired objects using spectral, spatial, and band channels. However, the image quality is typically distorted due to the limitations of sensing conditions and hardware operations. Consequently, the HSI is typically contaminated by a mixture noise during the acquisition process, including dead lines, stripes, Gaussian noise and impulse noise. In this paper, we introduce a new denoising model based on low-rank matrix recovery (LRMR), which can effectively remove various kinds of noise in HSI data. The low-rank property of the hyperspectral imagery is exploited by converting a patch of the HSI data from 3-D matrix into a 2-D matrix. The dead lines, stripes, and impulse noise are all modelled as sparse noise. To efficiently remove mixed noise and enhance performance, we develop an iterative algorithm using greedy bilateral technique to solve the optimization problem. To illustrate the proposed method’s efficacy in restoring HSI, both simulated and real-world HSI experiments are conducted.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"31 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像(HSI)可以通过光谱、空间和波段通道提供有关目标的有用信息。然而,由于传感条件和硬件操作的限制,图像质量通常会失真。因此,在采集过程中,恒生指数通常受到混合噪声的污染,包括死线、条纹、高斯噪声和脉冲噪声。本文提出了一种新的基于低秩矩阵恢复(LRMR)的去噪模型,该模型能够有效地去除恒指数据中的各种噪声。利用高光谱图像的低秩特性,将一块HSI数据从3-D矩阵转换为2-D矩阵。死线、条纹和脉冲噪声都被建模为稀疏噪声。为了有效地去除混合噪声并提高性能,我们开发了一种使用贪心双边技术的迭代算法来解决优化问题。为了说明该方法在恢复HSI方面的有效性,进行了模拟和真实的HSI实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hyperspectral Image Denoising Approach via Low-Rank Matrix Recovery and Greedy Bilateral
The hyperspectral image (HSI) can provide useful information about the desired objects using spectral, spatial, and band channels. However, the image quality is typically distorted due to the limitations of sensing conditions and hardware operations. Consequently, the HSI is typically contaminated by a mixture noise during the acquisition process, including dead lines, stripes, Gaussian noise and impulse noise. In this paper, we introduce a new denoising model based on low-rank matrix recovery (LRMR), which can effectively remove various kinds of noise in HSI data. The low-rank property of the hyperspectral imagery is exploited by converting a patch of the HSI data from 3-D matrix into a 2-D matrix. The dead lines, stripes, and impulse noise are all modelled as sparse noise. To efficiently remove mixed noise and enhance performance, we develop an iterative algorithm using greedy bilateral technique to solve the optimization problem. To illustrate the proposed method’s efficacy in restoring HSI, both simulated and real-world HSI experiments are conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信