Darrieus直叶式水轮机潮流应用试验研究及水电站布置参数优化

Vimal Patel , T.I. Eldho , S.V. Prabhu
{"title":"Darrieus直叶式水轮机潮流应用试验研究及水电站布置参数优化","authors":"Vimal Patel ,&nbsp;T.I. Eldho ,&nbsp;S.V. Prabhu","doi":"10.1016/j.ijome.2017.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>The energy flow rate per unit flow area of water flow is quite high compared to air flow. This is because of high density of water compared to that of air. Hence, hydrokinetic turbine has the potential to extract more power compared to wind turbine for the same size of a turbine. The Darrieus turbine is one of the best options which can be used as a hydrokinetic turbine due to its high coefficient of power. In present work, the experimental investigations are carried out to study the hydrodynamic performance of three bladed Darrieus turbine with NACA0015, NACA0018 and NACA4415 blades for different solidities. Maxwell’s velocity correction method is used to account for blockage effect. NACA0015 and NACA0018 provide highest coefficient of power of 0.15 at a solidity of around 0.382. Experiments are extended to evaluate performance for four bladed rotors with symmetric-NACA0018 and cambered-NACA4415 hydrofoils. Both the hydrofoils provide a coefficient of power of around 0.13 but at different solidities. The effect of spanwise and streamwise distance on performance of a Darrieus turbine is investigated for its use as hydrofarm. A minimum distance of 7D along the streamwise direction and 3D along the spanwise direction are essential in a hydrofarm using Darrieus turbines.</p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2017.01.007","citationCount":"51","resultStr":"{\"title\":\"Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement\",\"authors\":\"Vimal Patel ,&nbsp;T.I. Eldho ,&nbsp;S.V. Prabhu\",\"doi\":\"10.1016/j.ijome.2017.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy flow rate per unit flow area of water flow is quite high compared to air flow. This is because of high density of water compared to that of air. Hence, hydrokinetic turbine has the potential to extract more power compared to wind turbine for the same size of a turbine. The Darrieus turbine is one of the best options which can be used as a hydrokinetic turbine due to its high coefficient of power. In present work, the experimental investigations are carried out to study the hydrodynamic performance of three bladed Darrieus turbine with NACA0015, NACA0018 and NACA4415 blades for different solidities. Maxwell’s velocity correction method is used to account for blockage effect. NACA0015 and NACA0018 provide highest coefficient of power of 0.15 at a solidity of around 0.382. Experiments are extended to evaluate performance for four bladed rotors with symmetric-NACA0018 and cambered-NACA4415 hydrofoils. Both the hydrofoils provide a coefficient of power of around 0.13 but at different solidities. The effect of spanwise and streamwise distance on performance of a Darrieus turbine is investigated for its use as hydrofarm. A minimum distance of 7D along the streamwise direction and 3D along the spanwise direction are essential in a hydrofarm using Darrieus turbines.</p></div>\",\"PeriodicalId\":100705,\"journal\":{\"name\":\"International Journal of Marine Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ijome.2017.01.007\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Marine Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214166917300085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214166917300085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

与气流相比,水流单位流面积的能量流动率相当高。这是因为水的密度比空气高。因此,与风力涡轮机相比,在相同尺寸的涡轮机中,水动力涡轮机具有提取更多功率的潜力。达里厄斯涡轮机是最好的选择之一,可以作为一个水动力涡轮机,由于它的高功率系数。本文对NACA0015、NACA0018和NACA4415叶片在不同凝固状态下的三叶达里斯水轮机的水动力性能进行了试验研究。采用麦克斯韦速度修正法来解释堵塞效应。NACA0015和NACA0018的最高功率系数为0.15,固体度约为0.382。对对称型naca0018和弯曲型naca4415水翼的四叶式转子进行了性能评价。这两种水翼都提供了0.13左右的功率系数,但在不同的固化。研究了水轮机跨向距离和顺向距离对水轮机性能的影响。沿流方向的最小距离为7D,沿展向的最小距离为3D,在使用达瑞乌斯涡轮机的水力发电厂是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement

The energy flow rate per unit flow area of water flow is quite high compared to air flow. This is because of high density of water compared to that of air. Hence, hydrokinetic turbine has the potential to extract more power compared to wind turbine for the same size of a turbine. The Darrieus turbine is one of the best options which can be used as a hydrokinetic turbine due to its high coefficient of power. In present work, the experimental investigations are carried out to study the hydrodynamic performance of three bladed Darrieus turbine with NACA0015, NACA0018 and NACA4415 blades for different solidities. Maxwell’s velocity correction method is used to account for blockage effect. NACA0015 and NACA0018 provide highest coefficient of power of 0.15 at a solidity of around 0.382. Experiments are extended to evaluate performance for four bladed rotors with symmetric-NACA0018 and cambered-NACA4415 hydrofoils. Both the hydrofoils provide a coefficient of power of around 0.13 but at different solidities. The effect of spanwise and streamwise distance on performance of a Darrieus turbine is investigated for its use as hydrofarm. A minimum distance of 7D along the streamwise direction and 3D along the spanwise direction are essential in a hydrofarm using Darrieus turbines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信