量子信息的耗散编码

Giacomo Baggio, F. Ticozzi, Peter D. Johnson, L. Viola
{"title":"量子信息的耗散编码","authors":"Giacomo Baggio, F. Ticozzi, Peter D. Johnson, L. Viola","doi":"10.26421/QIC21.9-10-2","DOIUrl":null,"url":null,"abstract":"We formalize the problem of dissipative quantum encoding, and explore the advantages of using Markovian evolution to prepare a quantum code in the desired logical space, with emphasis on discrete-time dynamics and the possibility of exact finite-time convergence. In particular, we investigate robustness of the encoding dynamics and their ability to tolerate initialization errors, thanks to the existence of non-trivial basins of attraction. As a key application, we show that for stabilizer quantum codes on qubits, a finite-time dissipative encoder may always be constructed, by using at most a number of quantum maps determined by the number of stabilizer generators. We find that even in situations where the target code lacks gauge degrees of freedom in its subsystem form, dissipative encoders afford nontrivial robustness against initialization errors, thus overcoming a limitation of purely unitary encoding procedures. Our general results are illustrated in a number of relevant examples, including Kitaev’s toric code.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"27 1","pages":"737-770"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dissipative encoding of quantum information\",\"authors\":\"Giacomo Baggio, F. Ticozzi, Peter D. Johnson, L. Viola\",\"doi\":\"10.26421/QIC21.9-10-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formalize the problem of dissipative quantum encoding, and explore the advantages of using Markovian evolution to prepare a quantum code in the desired logical space, with emphasis on discrete-time dynamics and the possibility of exact finite-time convergence. In particular, we investigate robustness of the encoding dynamics and their ability to tolerate initialization errors, thanks to the existence of non-trivial basins of attraction. As a key application, we show that for stabilizer quantum codes on qubits, a finite-time dissipative encoder may always be constructed, by using at most a number of quantum maps determined by the number of stabilizer generators. We find that even in situations where the target code lacks gauge degrees of freedom in its subsystem form, dissipative encoders afford nontrivial robustness against initialization errors, thus overcoming a limitation of purely unitary encoding procedures. Our general results are illustrated in a number of relevant examples, including Kitaev’s toric code.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"27 1\",\"pages\":\"737-770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.9-10-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.9-10-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们形式化了耗散量子编码问题,并探讨了使用马尔可夫进化在期望的逻辑空间中制备量子编码的优点,重点是离散时间动力学和精确有限时间收敛的可能性。特别地,我们研究了编码动力学的鲁棒性及其容忍初始化错误的能力,这要归功于非平凡吸引力盆地的存在。作为一个关键的应用,我们证明了对于量子比特上的稳定子量子码,一个有限时间耗散编码器总是可以构造的,最多使用由稳定子生成器的数量决定的量子映射的数量。我们发现,即使在目标代码在其子系统形式中缺乏规范自由度的情况下,耗散编码器对初始化错误提供了非平凡的鲁棒性,从而克服了纯单一编码过程的限制。我们的一般结果在一些相关的例子中得到说明,包括Kitaev的环形代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative encoding of quantum information
We formalize the problem of dissipative quantum encoding, and explore the advantages of using Markovian evolution to prepare a quantum code in the desired logical space, with emphasis on discrete-time dynamics and the possibility of exact finite-time convergence. In particular, we investigate robustness of the encoding dynamics and their ability to tolerate initialization errors, thanks to the existence of non-trivial basins of attraction. As a key application, we show that for stabilizer quantum codes on qubits, a finite-time dissipative encoder may always be constructed, by using at most a number of quantum maps determined by the number of stabilizer generators. We find that even in situations where the target code lacks gauge degrees of freedom in its subsystem form, dissipative encoders afford nontrivial robustness against initialization errors, thus overcoming a limitation of purely unitary encoding procedures. Our general results are illustrated in a number of relevant examples, including Kitaev’s toric code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信