{"title":"评估聚类web文档的用户交互:一个实用的方法","authors":"Luis A. Leiva, E. Vidal","doi":"10.1145/1810617.1810673","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in describing Web pages by how users interact within their contents. Thus, an alternate but complementary way of labelling and classifying Web documents is introduced. The proposed methodology is founded on unsupervised learning algorithms, aiming to automatically find natural clusters by means of users' implicit interaction data. Furthermore, it also copes with the dynamic nature and heterogeneity of both users' behaviour and the Web, updating the clustering model over time. We want to show that our framework can be easily integrated in any Website, just employing already-known methods and current technologies.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"39 1","pages":"277-278"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Assessing users' interactions for clustering web documents: a pragmatic approach\",\"authors\":\"Luis A. Leiva, E. Vidal\",\"doi\":\"10.1145/1810617.1810673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are interested in describing Web pages by how users interact within their contents. Thus, an alternate but complementary way of labelling and classifying Web documents is introduced. The proposed methodology is founded on unsupervised learning algorithms, aiming to automatically find natural clusters by means of users' implicit interaction data. Furthermore, it also copes with the dynamic nature and heterogeneity of both users' behaviour and the Web, updating the clustering model over time. We want to show that our framework can be easily integrated in any Website, just employing already-known methods and current technologies.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"39 1\",\"pages\":\"277-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1810617.1810673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1810617.1810673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing users' interactions for clustering web documents: a pragmatic approach
In this paper we are interested in describing Web pages by how users interact within their contents. Thus, an alternate but complementary way of labelling and classifying Web documents is introduced. The proposed methodology is founded on unsupervised learning algorithms, aiming to automatically find natural clusters by means of users' implicit interaction data. Furthermore, it also copes with the dynamic nature and heterogeneity of both users' behaviour and the Web, updating the clustering model over time. We want to show that our framework can be easily integrated in any Website, just employing already-known methods and current technologies.