基于Robin-Robin耦合的松耦合非迭代分时方案:抛物型/抛物型和抛物型/双曲型问题的统一分析

IF 3.8 2区 数学 Q1 MATHEMATICS
E. Burman, R. Durst, Miguel A. Fern'andez, Johnny Guzm'an
{"title":"基于Robin-Robin耦合的松耦合非迭代分时方案:抛物型/抛物型和抛物型/双曲型问题的统一分析","authors":"E. Burman, R. Durst, Miguel A. Fern'andez, Johnny Guzm'an","doi":"10.1515/jnma-2021-0119","DOIUrl":null,"url":null,"abstract":"Abstract We present a loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling conditions. We apply a novel unified analysis for this scheme applied to both a parabolic/parabolic coupled system and a parabolic/hyperbolic coupled system. We show for both systems that the scheme is stable, and the error converges as O(ΔtT+log(1Δt)), $\\mathcal{O}\\big({\\Delta t} \\sqrt{T +\\log(\\frac{1}{{\\Delta t}})}\\big),$where Δt is the time step.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"50 2 1","pages":"59 - 77"},"PeriodicalIF":3.8000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling: Unified analysis for parabolic/parabolic and parabolic/hyperbolic problems\",\"authors\":\"E. Burman, R. Durst, Miguel A. Fern'andez, Johnny Guzm'an\",\"doi\":\"10.1515/jnma-2021-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling conditions. We apply a novel unified analysis for this scheme applied to both a parabolic/parabolic coupled system and a parabolic/hyperbolic coupled system. We show for both systems that the scheme is stable, and the error converges as O(ΔtT+log(1Δt)), $\\\\mathcal{O}\\\\big({\\\\Delta t} \\\\sqrt{T +\\\\log(\\\\frac{1}{{\\\\Delta t}})}\\\\big),$where Δt is the time step.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":\"50 2 1\",\"pages\":\"59 - 77\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0119\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要提出了一种基于Robin-Robin耦合条件的松耦合非迭代时分裂方案。我们将该格式统一地应用于抛物型/抛物型耦合系统和抛物型/双曲型耦合系统。对于这两个系统,我们证明了该方案是稳定的,并且误差收敛为O(ΔtT+log(1Δt)), $\mathcal{O}\big({\Delta t} \sqrt{T +\log(\frac{1}{{\Delta t}})}\big),$,其中Δt是时间步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling: Unified analysis for parabolic/parabolic and parabolic/hyperbolic problems
Abstract We present a loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling conditions. We apply a novel unified analysis for this scheme applied to both a parabolic/parabolic coupled system and a parabolic/hyperbolic coupled system. We show for both systems that the scheme is stable, and the error converges as O(ΔtT+log(1Δt)), $\mathcal{O}\big({\Delta t} \sqrt{T +\log(\frac{1}{{\Delta t}})}\big),$where Δt is the time step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信