{"title":"n -乙酰基-对苯醌亚胺代谢物作为扑热息痛可能的神经毒性因素","authors":"Yuliya A. Vlasova, Ksenia A. Zagorodnikova","doi":"10.17816/mechnikov99620","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Currently, the possible negative effects of paracetamol on the central nervous system are widely discussed in the modern scientific literature. The relationship between the intake of paracetamol during pregnancy by women and the risk of autism spectrum disorders in their children is being studied. However, such conclusions are often met with serious criticism as there are many questions about the methods of assessing behavioral disorders and processing research results. Therefore, experimental data obtained on neuronal cells may be a sufficient ground to confirm or refute assumptions about the neurotoxicity of paracetamol and its metabolites. \nAIM: To study the effect of paracetamol and its metabolite N-acetyl-p-benzoquinonimine (NAPQI) on the neurons of the cerebral cortex of fetal rats. \nMATERIALS AND METHODS: The study of the effect of paracetamol and its metabolite NAPQI on cell viability has been carried out by a method based on the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-tetrazolium bromide (MTT). \nRESULTS: It has been shown that during preincubation of neurons in the cerebral cortex of the rats with paracetamol at a concentration of 1 mg/ml for 24 hours and subsequent incubation with 0.3 mM hydrogen peroxide, both hydrogen peroxide and paracetamol itself reduce the viability of neurons. Joint incubation with paracetamol and hydrogen peroxide also reduces the viability of neurons. The same effect of paracetamol and its metabolite is observed with the joint preincubation of paracetamol or NAPQI and hydrogen peroxide. \nCONCLUSIONS: Paracetamol as well its metabolite NAPQI reduce the viability of neurons in the fetal cortex of rats.","PeriodicalId":12949,"journal":{"name":"HERALD of North-Western State Medical University named after I.I. Mechnikov","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-acetyl-p-benzoquinonimine metabolite as a factor of possible neurotoxicity of paracetamol\",\"authors\":\"Yuliya A. Vlasova, Ksenia A. Zagorodnikova\",\"doi\":\"10.17816/mechnikov99620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Currently, the possible negative effects of paracetamol on the central nervous system are widely discussed in the modern scientific literature. The relationship between the intake of paracetamol during pregnancy by women and the risk of autism spectrum disorders in their children is being studied. However, such conclusions are often met with serious criticism as there are many questions about the methods of assessing behavioral disorders and processing research results. Therefore, experimental data obtained on neuronal cells may be a sufficient ground to confirm or refute assumptions about the neurotoxicity of paracetamol and its metabolites. \\nAIM: To study the effect of paracetamol and its metabolite N-acetyl-p-benzoquinonimine (NAPQI) on the neurons of the cerebral cortex of fetal rats. \\nMATERIALS AND METHODS: The study of the effect of paracetamol and its metabolite NAPQI on cell viability has been carried out by a method based on the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-tetrazolium bromide (MTT). \\nRESULTS: It has been shown that during preincubation of neurons in the cerebral cortex of the rats with paracetamol at a concentration of 1 mg/ml for 24 hours and subsequent incubation with 0.3 mM hydrogen peroxide, both hydrogen peroxide and paracetamol itself reduce the viability of neurons. Joint incubation with paracetamol and hydrogen peroxide also reduces the viability of neurons. The same effect of paracetamol and its metabolite is observed with the joint preincubation of paracetamol or NAPQI and hydrogen peroxide. \\nCONCLUSIONS: Paracetamol as well its metabolite NAPQI reduce the viability of neurons in the fetal cortex of rats.\",\"PeriodicalId\":12949,\"journal\":{\"name\":\"HERALD of North-Western State Medical University named after I.I. Mechnikov\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HERALD of North-Western State Medical University named after I.I. Mechnikov\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/mechnikov99620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HERALD of North-Western State Medical University named after I.I. Mechnikov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/mechnikov99620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
N-acetyl-p-benzoquinonimine metabolite as a factor of possible neurotoxicity of paracetamol
BACKGROUND: Currently, the possible negative effects of paracetamol on the central nervous system are widely discussed in the modern scientific literature. The relationship between the intake of paracetamol during pregnancy by women and the risk of autism spectrum disorders in their children is being studied. However, such conclusions are often met with serious criticism as there are many questions about the methods of assessing behavioral disorders and processing research results. Therefore, experimental data obtained on neuronal cells may be a sufficient ground to confirm or refute assumptions about the neurotoxicity of paracetamol and its metabolites.
AIM: To study the effect of paracetamol and its metabolite N-acetyl-p-benzoquinonimine (NAPQI) on the neurons of the cerebral cortex of fetal rats.
MATERIALS AND METHODS: The study of the effect of paracetamol and its metabolite NAPQI on cell viability has been carried out by a method based on the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-tetrazolium bromide (MTT).
RESULTS: It has been shown that during preincubation of neurons in the cerebral cortex of the rats with paracetamol at a concentration of 1 mg/ml for 24 hours and subsequent incubation with 0.3 mM hydrogen peroxide, both hydrogen peroxide and paracetamol itself reduce the viability of neurons. Joint incubation with paracetamol and hydrogen peroxide also reduces the viability of neurons. The same effect of paracetamol and its metabolite is observed with the joint preincubation of paracetamol or NAPQI and hydrogen peroxide.
CONCLUSIONS: Paracetamol as well its metabolite NAPQI reduce the viability of neurons in the fetal cortex of rats.