{"title":"量子随机积与量子卷积","authors":"P. Aniello","doi":"10.7546/GIQ-22-2021-64-77","DOIUrl":null,"url":null,"abstract":"A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Stochastic Products and the Quantum Convolution\",\"authors\":\"P. Aniello\",\"doi\":\"10.7546/GIQ-22-2021-64-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-22-2021-64-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-22-2021-64-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Quantum Stochastic Products and the Quantum Convolution
A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.