量子随机积与量子卷积

Q4 Mathematics
P. Aniello
{"title":"量子随机积与量子卷积","authors":"P. Aniello","doi":"10.7546/GIQ-22-2021-64-77","DOIUrl":null,"url":null,"abstract":"A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Stochastic Products and the Quantum Convolution\",\"authors\":\"P. Aniello\",\"doi\":\"10.7546/GIQ-22-2021-64-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-22-2021-64-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-22-2021-64-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

量子随机积是在量子态空间上保持凸结构的二元运算。我们描述了一类与量子测量理论有有趣联系的关联随机积,即旋转积。构造这样一个积涉及到一个平方可积群表示、一个概率测度和一个基准状态。通过将一个旋转积扩展到跟踪类运算符的整个空间,可以得到一个Banach代数。如果底层群是阿贝尔,这个代数是可交换的。对于相空间上的平移群,我们得到一个量子卷积代数,一个经典相空间卷积代数的量子对立物。强调了表征每个量子卷积积的基态的特殊作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Stochastic Products and the Quantum Convolution
A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信