{"title":"预测预期和意外损失","authors":"M. Juselius, Nikola A. Tarashev","doi":"10.2139/ssrn.3764723","DOIUrl":null,"url":null,"abstract":"Extending a standard credit-risk model illustrates that a single factor can drive both expected losses and the extent to which they may be exceeded in extreme scenarios, ie “unexpected losses.” This leads us to develop a framework for forecasting these losses jointly. In an application to quarterly US data on loan charge-offs from 1985 to 2019, we find that financial-cycle indicators – notably, the debt service ratio and credit-to-GDP gap – deliver reliable real-time forecasts, signalling turning points up to three years in advance. Provisions and capital that reflect such forecasts would help reduce the procyclicality of banks’ loss-absorbing resources.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Forecasting Expected and Unexpected Losses\",\"authors\":\"M. Juselius, Nikola A. Tarashev\",\"doi\":\"10.2139/ssrn.3764723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extending a standard credit-risk model illustrates that a single factor can drive both expected losses and the extent to which they may be exceeded in extreme scenarios, ie “unexpected losses.” This leads us to develop a framework for forecasting these losses jointly. In an application to quarterly US data on loan charge-offs from 1985 to 2019, we find that financial-cycle indicators – notably, the debt service ratio and credit-to-GDP gap – deliver reliable real-time forecasts, signalling turning points up to three years in advance. Provisions and capital that reflect such forecasts would help reduce the procyclicality of banks’ loss-absorbing resources.\",\"PeriodicalId\":11410,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3764723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3764723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending a standard credit-risk model illustrates that a single factor can drive both expected losses and the extent to which they may be exceeded in extreme scenarios, ie “unexpected losses.” This leads us to develop a framework for forecasting these losses jointly. In an application to quarterly US data on loan charge-offs from 1985 to 2019, we find that financial-cycle indicators – notably, the debt service ratio and credit-to-GDP gap – deliver reliable real-time forecasts, signalling turning points up to three years in advance. Provisions and capital that reflect such forecasts would help reduce the procyclicality of banks’ loss-absorbing resources.