C. Ugwumadu, K. Nepal, R. Thapa, David Alan Drabold
{"title":"非晶石墨的原子性质","authors":"C. Ugwumadu, K. Nepal, R. Thapa, David Alan Drabold","doi":"10.13036/17533562.64.1.18","DOIUrl":null,"url":null,"abstract":"This paper focuses on the structural, electronic, and vibrational features of amorphous graphite [R. Thapa et al, Phys. Rev. Lett., 2022, 128, 236402]. The structural order in amorphous graphite is discussed and compared with graphite and amorphous carbon. The electronic density of states and localization in these phases were analyzed. Spatial projection of charge densities in the π bands showed a high charge concentration on participating atoms in connecting hexagons. A vibrational density of states was computed and is potentially an experimentally testable fingerprint of the material. An analysis of the vibrational modes was carried out using the phase quotient, and the mode stretching character. The average thermal conductivity calculated for aG was 0·85 and 0·96 W/cmK at room temperature and 1000 K, respectively.","PeriodicalId":49696,"journal":{"name":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","volume":"13 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Atomistic nature of amorphous graphite\",\"authors\":\"C. Ugwumadu, K. Nepal, R. Thapa, David Alan Drabold\",\"doi\":\"10.13036/17533562.64.1.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the structural, electronic, and vibrational features of amorphous graphite [R. Thapa et al, Phys. Rev. Lett., 2022, 128, 236402]. The structural order in amorphous graphite is discussed and compared with graphite and amorphous carbon. The electronic density of states and localization in these phases were analyzed. Spatial projection of charge densities in the π bands showed a high charge concentration on participating atoms in connecting hexagons. A vibrational density of states was computed and is potentially an experimentally testable fingerprint of the material. An analysis of the vibrational modes was carried out using the phase quotient, and the mode stretching character. The average thermal conductivity calculated for aG was 0·85 and 0·96 W/cmK at room temperature and 1000 K, respectively.\",\"PeriodicalId\":49696,\"journal\":{\"name\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.13036/17533562.64.1.18\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.13036/17533562.64.1.18","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
This paper focuses on the structural, electronic, and vibrational features of amorphous graphite [R. Thapa et al, Phys. Rev. Lett., 2022, 128, 236402]. The structural order in amorphous graphite is discussed and compared with graphite and amorphous carbon. The electronic density of states and localization in these phases were analyzed. Spatial projection of charge densities in the π bands showed a high charge concentration on participating atoms in connecting hexagons. A vibrational density of states was computed and is potentially an experimentally testable fingerprint of the material. An analysis of the vibrational modes was carried out using the phase quotient, and the mode stretching character. The average thermal conductivity calculated for aG was 0·85 and 0·96 W/cmK at room temperature and 1000 K, respectively.
期刊介绍:
Physics and Chemistry of Glasses accepts papers of a more purely scientific interest concerned with glasses and their structure or properties. Thus the subject of a paper will normally determine the journal in which it will be published.