利用油藏导航距离-层图实时校正地下地震深度的不确定性

Victor Imomoh, K. Amadi, J. Onyeji
{"title":"利用油藏导航距离-层图实时校正地下地震深度的不确定性","authors":"Victor Imomoh, K. Amadi, J. Onyeji","doi":"10.2118/208239-ms","DOIUrl":null,"url":null,"abstract":"\n The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section.\n The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir.\n Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface.\n This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correcting Subsurface Seismic Depth Uncertainty in Real-Time Using Reservoir Navigation Distance-to-Bed Mapping\",\"authors\":\"Victor Imomoh, K. Amadi, J. Onyeji\",\"doi\":\"10.2118/208239-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section.\\n The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir.\\n Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface.\\n This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208239-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208239-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水平钻井最常见的挑战是深度不确定性,这可能是由于地震数据或解释不准确造成的。有争议的是,在大多数地质导向作业中,最具挑战性的是如何将井眼在油藏中的最佳位置和期望区域内成功着陆。油水界面(OWC)和油气界面(GOC)等流体界面的存在使整个钻井过程变得复杂,尤其是当这些流体界面没有很好地定义或已知时。此外,当BHA钻入横向段时,能够绘制储层边界,这是保持在期望的储层段内的一个额外优势。在储层顶部地震不确定性较高的情况下,任何油藏导航服务的成功与否,在很大程度上取决于地质导向系统的有效性,以及地质导向工程师在储层下井和在不离开储层的情况下钻井横向段时,如何对变化做出快速反应。储层导航服务(RNS)为水平井或水平井附近的钻井提供了一种手段,以增加地下油气的采收率。这包括使用内置随钻测井(LWD)和随钻测量(MWD)传感器的预定义底部钻具组合(BHA)。这些井下传感器的测量数据被上传到井筒表面,在那里它们被转换成有意义的岩石物理数据。目的是利用井下岩石物理数据,如伽马射线、传播电阻率等,更新现有的地球某一段的井前地质模型,使最终结果能够描绘出地球地下的真实模型图像。本文以CBH-44L井为例,展示了如何使用深读方位角传播电阻率工具进行实时边界距离(D2B)测量,以纠正地震中的深度不确定性,从而提高水平井成功着陆和钻井的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correcting Subsurface Seismic Depth Uncertainty in Real-Time Using Reservoir Navigation Distance-to-Bed Mapping
The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section. The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir. Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface. This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信