{"title":"利用油藏导航距离-层图实时校正地下地震深度的不确定性","authors":"Victor Imomoh, K. Amadi, J. Onyeji","doi":"10.2118/208239-ms","DOIUrl":null,"url":null,"abstract":"\n The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section.\n The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir.\n Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface.\n This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correcting Subsurface Seismic Depth Uncertainty in Real-Time Using Reservoir Navigation Distance-to-Bed Mapping\",\"authors\":\"Victor Imomoh, K. Amadi, J. Onyeji\",\"doi\":\"10.2118/208239-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section.\\n The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir.\\n Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface.\\n This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208239-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208239-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correcting Subsurface Seismic Depth Uncertainty in Real-Time Using Reservoir Navigation Distance-to-Bed Mapping
The most common challenge in horizontal drilling is depth uncertainty which can be due to poor seismic data or interpretation. It is arguable that a successful landing of the wellbore in the reservoir optimally and within the desired zone is the most challenging in most geosteering operation. The presence of fluid contacts such as oil-water-contact (OWC) and gas-oil-contact (GOC) complicates the whole drilling process, most especially if these fluid contacts are not well defined or known. Additionally, the ability to map the boundaries of the reservoir as the BHA drills the lateral section is an added advantage to remaining within the desired reservoir section.
The success of any reservoir navigation service where seismic uncertainty at the reservoir top is high will rely largely on how effective the geosteering system is and how the geosteering engineer is able to react promptly to changes while landing the well in the reservoir and drilling the lateral section with without exiting the reservoir.
Reservoir Navigation Service (RNS) provides the means for the drilling near horizontal or horizontal wells for the purpose of increasing hydrocarbon extraction from the earth's subsurface. This involves the use of a pre-defined bottom hole assembly (BHA) with inbuilt downhole logging while drilling (LWD) and measurement while drilling (MWD) sensors. The measurements from these downhole sensors are uplinked to the surface of the wellbore where they are converted to meaningful petrophysical data. The goal is to use the downhole petrophysical data such as gamma ray, propagation resistivity and so on, to update an existing pre-well geological model of a section of the earth in such a way that the final result depicts the true model picture of the earth subsurface.
This paper focuses on using well CBH-44L to showcase how the use of real-time distance-to-boundary (D2B) measurement from a deep reading azimuthal propagation resistivity tool is use to correct for depth uncertainty in seismic, thereby, improving the chance of successfully landing and drilling a horizontal well.