Ct图像中肝脏及癌性结节的深关节分割

N. Elmenabawy, A. Elnakib, H. Moustafa
{"title":"Ct图像中肝脏及癌性结节的深关节分割","authors":"N. Elmenabawy, A. Elnakib, H. Moustafa","doi":"10.1109/NRSC49500.2020.9235097","DOIUrl":null,"url":null,"abstract":"A framework is proposed for joint liver and cancerous nodule segmentation from abdomen computed tomography (CT) images. The proposed framework consists of three main units. First, a preprocessing unit is used to enhance the image contrast. Second, two different deep convolutional-deconvolutional neural networks (CDNN), namely, Alexnet and Resnet18 models, are investigated to extract the features of liver images. Finally, a pixel wise classification unit is performed to provide the final segmentation maps of the liver and tumors. Results on the challenging MICCAI’2017 liver tumor segmentation (LITS) database, using Alexnet model and 4-fold cross-validation, achieve a Dice similarity coefficient of 90.4% for liver segmentation and of 62.4% for lesion segmentation. Comparative results with related techniques for joint liver and tumor segmentations show the effectiveness of the proposed framework.","PeriodicalId":6778,"journal":{"name":"2020 37th National Radio Science Conference (NRSC)","volume":"34 1","pages":"296-301"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Joint Segmentation of Liver and Cancerous Nodules From Ct Images\",\"authors\":\"N. Elmenabawy, A. Elnakib, H. Moustafa\",\"doi\":\"10.1109/NRSC49500.2020.9235097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A framework is proposed for joint liver and cancerous nodule segmentation from abdomen computed tomography (CT) images. The proposed framework consists of three main units. First, a preprocessing unit is used to enhance the image contrast. Second, two different deep convolutional-deconvolutional neural networks (CDNN), namely, Alexnet and Resnet18 models, are investigated to extract the features of liver images. Finally, a pixel wise classification unit is performed to provide the final segmentation maps of the liver and tumors. Results on the challenging MICCAI’2017 liver tumor segmentation (LITS) database, using Alexnet model and 4-fold cross-validation, achieve a Dice similarity coefficient of 90.4% for liver segmentation and of 62.4% for lesion segmentation. Comparative results with related techniques for joint liver and tumor segmentations show the effectiveness of the proposed framework.\",\"PeriodicalId\":6778,\"journal\":{\"name\":\"2020 37th National Radio Science Conference (NRSC)\",\"volume\":\"34 1\",\"pages\":\"296-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 37th National Radio Science Conference (NRSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC49500.2020.9235097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 37th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC49500.2020.9235097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种从腹部计算机断层扫描(CT)图像中分割关节肝和癌结节的框架。拟议的框架由三个主要单元组成。首先,利用预处理单元增强图像对比度。其次,研究了两种不同的深度卷积-反卷积神经网络(CDNN),即Alexnet和Resnet18模型,以提取肝脏图像的特征。最后,执行逐像素分类单元以提供肝脏和肿瘤的最终分割图。结果在MICCAI ' 2017肝脏肿瘤分割(LITS)数据库上,使用Alexnet模型和4倍交叉验证,肝脏分割的Dice相似系数为90.4%,病变分割的Dice相似系数为62.4%。与关节肝和肿瘤分割的相关技术的比较结果表明了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Joint Segmentation of Liver and Cancerous Nodules From Ct Images
A framework is proposed for joint liver and cancerous nodule segmentation from abdomen computed tomography (CT) images. The proposed framework consists of three main units. First, a preprocessing unit is used to enhance the image contrast. Second, two different deep convolutional-deconvolutional neural networks (CDNN), namely, Alexnet and Resnet18 models, are investigated to extract the features of liver images. Finally, a pixel wise classification unit is performed to provide the final segmentation maps of the liver and tumors. Results on the challenging MICCAI’2017 liver tumor segmentation (LITS) database, using Alexnet model and 4-fold cross-validation, achieve a Dice similarity coefficient of 90.4% for liver segmentation and of 62.4% for lesion segmentation. Comparative results with related techniques for joint liver and tumor segmentations show the effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信