复杂背景下的实时人脸检测与识别

Q3 Computer Science
Xin Zhang, T. Gonnot, J. Saniie
{"title":"复杂背景下的实时人脸检测与识别","authors":"Xin Zhang, T. Gonnot, J. Saniie","doi":"10.4236/JSIP.2017.82007","DOIUrl":null,"url":null,"abstract":"This paper provides efficient and robust algorithms for real-time face detection and recognition in complex backgrounds. The algorithms are implemented using a series of signal processing methods including Ada Boost, cascade classifier, Local Binary Pattern (LBP), Haar-like feature, facial image pre-processing and Principal Component Analysis (PCA). The Ada Boost algorithm is implemented in a cascade classifier to train the face and eye detectors with robust detection accuracy. The LBP descriptor is utilized to extract facial features for fast face detection. The eye detection algorithm reduces the false face detection rate. The detected facial image is then processed to correct the orientation and increase the contrast, therefore, maintains high facial recognition accuracy. Finally, the PCA algorithm is used to recognize faces efficiently. Large databases with faces and non-faces images are used to train and validate face detection and facial recognition algorithms. The algorithms achieve an overall true-positive rate of 98.8% for face detection and 99.2% for correct facial recognition.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"30 1","pages":"99-112"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Real-Time Face Detection and Recognition in Complex Background\",\"authors\":\"Xin Zhang, T. Gonnot, J. Saniie\",\"doi\":\"10.4236/JSIP.2017.82007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides efficient and robust algorithms for real-time face detection and recognition in complex backgrounds. The algorithms are implemented using a series of signal processing methods including Ada Boost, cascade classifier, Local Binary Pattern (LBP), Haar-like feature, facial image pre-processing and Principal Component Analysis (PCA). The Ada Boost algorithm is implemented in a cascade classifier to train the face and eye detectors with robust detection accuracy. The LBP descriptor is utilized to extract facial features for fast face detection. The eye detection algorithm reduces the false face detection rate. The detected facial image is then processed to correct the orientation and increase the contrast, therefore, maintains high facial recognition accuracy. Finally, the PCA algorithm is used to recognize faces efficiently. Large databases with faces and non-faces images are used to train and validate face detection and facial recognition algorithms. The algorithms achieve an overall true-positive rate of 98.8% for face detection and 99.2% for correct facial recognition.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"30 1\",\"pages\":\"99-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2017.82007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2017.82007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 37

摘要

本文为复杂背景下的实时人脸检测和识别提供了高效、鲁棒的算法。该算法采用Ada Boost、级联分类器、局部二值模式(LBP)、haar样特征、人脸图像预处理和主成分分析(PCA)等一系列信号处理方法实现。在级联分类器中实现Ada Boost算法,以训练具有鲁棒检测精度的人脸和眼睛检测器。利用LBP描述符提取人脸特征,实现快速人脸检测。眼部检测算法降低了假人脸的检测率。然后对检测到的人脸图像进行处理,以校正方向并增加对比度,从而保持较高的人脸识别精度。最后,利用PCA算法对人脸进行有效识别。人脸和非人脸图像的大型数据库用于训练和验证人脸检测和人脸识别算法。该算法在人脸检测和正确人脸识别方面的总真阳性率分别为98.8%和99.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Face Detection and Recognition in Complex Background
This paper provides efficient and robust algorithms for real-time face detection and recognition in complex backgrounds. The algorithms are implemented using a series of signal processing methods including Ada Boost, cascade classifier, Local Binary Pattern (LBP), Haar-like feature, facial image pre-processing and Principal Component Analysis (PCA). The Ada Boost algorithm is implemented in a cascade classifier to train the face and eye detectors with robust detection accuracy. The LBP descriptor is utilized to extract facial features for fast face detection. The eye detection algorithm reduces the false face detection rate. The detected facial image is then processed to correct the orientation and increase the contrast, therefore, maintains high facial recognition accuracy. Finally, the PCA algorithm is used to recognize faces efficiently. Large databases with faces and non-faces images are used to train and validate face detection and facial recognition algorithms. The algorithms achieve an overall true-positive rate of 98.8% for face detection and 99.2% for correct facial recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信