基于改进深度强化学习的物联网花样滑冰视频跳跃动作识别

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Yu Liu, Ningjie Zhou
{"title":"基于改进深度强化学习的物联网花样滑冰视频跳跃动作识别","authors":"Yu Liu, Ningjie Zhou","doi":"10.5755/j01.itc.52.2.33300","DOIUrl":null,"url":null,"abstract":"Figure skating video jumping action is a complex combination action, which is difficult to recognize, and the recognition of jumping action can correct athletes’ technical errors, which is of great significance to improve athletes’ performance. Due to the recognition effect of figure skating video jumping action recognition algorithm is poor, we propose a figure skating video jumping action recognition algorithm using improved deep reinforcement learning in Internet of things (IoT). First, IoT technology is used to collect the figure skating video, the figure skating video target is detected, the human bone point features through the feature extraction network is obtained, and centralized processing is performed to complete the optimization of the extraction results. Second, the shallow STGCN network is improved to the DSTG dense connection network structure, based on which an improved deep reinforcement learning action recognition model is constructed, and the actionrecognition results are output through the deep network structure. Finally, a confidence fusion scheme is established to determine the final jumping action recognition result through the confidence is established. The results show that this paper effectively improves the accuracy of figure skating video jumping action recognition results, and the recognition quality is higher. It can be widely used in the field of figure skating action recognition, to improve the training effect of athletes.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"7 1","pages":"309-321"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jumping Action Recognition for Figure Skating Video in IoT Using Improved Deep Reinforcement Learning\",\"authors\":\"Yu Liu, Ningjie Zhou\",\"doi\":\"10.5755/j01.itc.52.2.33300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Figure skating video jumping action is a complex combination action, which is difficult to recognize, and the recognition of jumping action can correct athletes’ technical errors, which is of great significance to improve athletes’ performance. Due to the recognition effect of figure skating video jumping action recognition algorithm is poor, we propose a figure skating video jumping action recognition algorithm using improved deep reinforcement learning in Internet of things (IoT). First, IoT technology is used to collect the figure skating video, the figure skating video target is detected, the human bone point features through the feature extraction network is obtained, and centralized processing is performed to complete the optimization of the extraction results. Second, the shallow STGCN network is improved to the DSTG dense connection network structure, based on which an improved deep reinforcement learning action recognition model is constructed, and the actionrecognition results are output through the deep network structure. Finally, a confidence fusion scheme is established to determine the final jumping action recognition result through the confidence is established. The results show that this paper effectively improves the accuracy of figure skating video jumping action recognition results, and the recognition quality is higher. It can be widely used in the field of figure skating action recognition, to improve the training effect of athletes.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"7 1\",\"pages\":\"309-321\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.2.33300\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.33300","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

花样滑冰视频跳跃动作是一个复杂的组合动作,很难识别,对跳跃动作的识别可以纠正运动员的技术失误,对提高运动员的成绩具有重要意义。针对花样滑冰视频跳跃动作识别算法识别效果较差的问题,我们提出了一种基于改进的物联网(IoT)中深度强化学习的花样滑冰视频跳跃动作识别算法。首先,利用IoT技术采集花样滑冰视频,对花样滑冰视频目标进行检测,通过特征提取网络获得人骨点特征,并进行集中处理,完成提取结果的优化。其次,将浅层STGCN网络改进为DSTG密集连接网络结构,在此基础上构建改进的深度强化学习动作识别模型,并通过深度网络结构输出动作识别结果。最后,建立置信度融合方案,通过置信度确定最终的跳跃动作识别结果。结果表明,本文有效提高了花样滑冰视频跳跃动作识别结果的准确性,识别质量较高。它可以广泛应用于花样滑冰动作识别领域,提高运动员的训练效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jumping Action Recognition for Figure Skating Video in IoT Using Improved Deep Reinforcement Learning
Figure skating video jumping action is a complex combination action, which is difficult to recognize, and the recognition of jumping action can correct athletes’ technical errors, which is of great significance to improve athletes’ performance. Due to the recognition effect of figure skating video jumping action recognition algorithm is poor, we propose a figure skating video jumping action recognition algorithm using improved deep reinforcement learning in Internet of things (IoT). First, IoT technology is used to collect the figure skating video, the figure skating video target is detected, the human bone point features through the feature extraction network is obtained, and centralized processing is performed to complete the optimization of the extraction results. Second, the shallow STGCN network is improved to the DSTG dense connection network structure, based on which an improved deep reinforcement learning action recognition model is constructed, and the actionrecognition results are output through the deep network structure. Finally, a confidence fusion scheme is established to determine the final jumping action recognition result through the confidence is established. The results show that this paper effectively improves the accuracy of figure skating video jumping action recognition results, and the recognition quality is higher. It can be widely used in the field of figure skating action recognition, to improve the training effect of athletes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信