关于巴拿赫格c_0(\ell_2^n)$的注释,它的对偶和偶

IF 1 Q1 MATHEMATICS
M.L. Lourenço, V. Miranda
{"title":"关于巴拿赫格c_0(\\ell_2^n)$的注释,它的对偶和偶","authors":"M.L. Lourenço, V. Miranda","doi":"10.15330/cmp.15.1.270-277","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to study some geometric and topological properties of $c_0$-sum of the finite dimensional Banach lattice $\\ell_2^n$, its dual and its bidual. Among other results, we show that the Banach lattice $c_0(\\ell_2^n)$ has the strong Gelfand-Philips property, but does not have the positive Grothendieck property. We also prove that the closed unit ball of $l_{\\infty}(\\ell_2^n)$ is an almost limited set.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the Banach lattice $c_0( \\\\ell_2^n)$, its dual and its bidual\",\"authors\":\"M.L. Lourenço, V. Miranda\",\"doi\":\"10.15330/cmp.15.1.270-277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper is to study some geometric and topological properties of $c_0$-sum of the finite dimensional Banach lattice $\\\\ell_2^n$, its dual and its bidual. Among other results, we show that the Banach lattice $c_0(\\\\ell_2^n)$ has the strong Gelfand-Philips property, but does not have the positive Grothendieck property. We also prove that the closed unit ball of $l_{\\\\infty}(\\\\ell_2^n)$ is an almost limited set.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.270-277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.270-277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究有限维Banach格$\ell_2^n$的和($c_0$ -sum)及其对偶和对偶的一些几何和拓扑性质。在其他结果中,我们证明了Banach格$c_0(\ell_2^n)$具有强Gelfand-Philips性质,但不具有正的Grothendieck性质。并证明了$l_{\infty}(\ell_2^n)$的闭单位球是一个几乎有限集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the Banach lattice $c_0( \ell_2^n)$, its dual and its bidual
The main purpose of this paper is to study some geometric and topological properties of $c_0$-sum of the finite dimensional Banach lattice $\ell_2^n$, its dual and its bidual. Among other results, we show that the Banach lattice $c_0(\ell_2^n)$ has the strong Gelfand-Philips property, but does not have the positive Grothendieck property. We also prove that the closed unit ball of $l_{\infty}(\ell_2^n)$ is an almost limited set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信