差分进化与遗传算法:非归一化时间序列的符号聚合近似

Muhammad Marwan Muhammad Fuad
{"title":"差分进化与遗传算法:非归一化时间序列的符号聚合近似","authors":"Muhammad Marwan Muhammad Fuad","doi":"10.1145/2351476.2351501","DOIUrl":null,"url":null,"abstract":"The differential evolution (DE) is a very powerful search method for solving many optimization problems. In this paper we present a new scheme (DESAX) based on the differential evolution to localize the breakpoints utilized with the symbolic aggregate approximation method; one of the most important symbolic representation techniques for times series data. We compare the new scheme with a previous one (GASAX), which is based on the genetic algorithms, and we show how the new scheme outperforms the original one. We also show how (DESAX) can be used for the symbolic aggregate approximation of non-normalized time series.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"18 1","pages":"205-210"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Differential evolution versus genetic algorithms: towards symbolic aggregate approximation of non-normalized time series\",\"authors\":\"Muhammad Marwan Muhammad Fuad\",\"doi\":\"10.1145/2351476.2351501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differential evolution (DE) is a very powerful search method for solving many optimization problems. In this paper we present a new scheme (DESAX) based on the differential evolution to localize the breakpoints utilized with the symbolic aggregate approximation method; one of the most important symbolic representation techniques for times series data. We compare the new scheme with a previous one (GASAX), which is based on the genetic algorithms, and we show how the new scheme outperforms the original one. We also show how (DESAX) can be used for the symbolic aggregate approximation of non-normalized time series.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"18 1\",\"pages\":\"205-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2351476.2351501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2351476.2351501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

差分进化(DE)是一种非常强大的搜索方法,可用于解决许多优化问题。本文提出了一种基于差分进化的断点局部化算法(DESAX),该算法利用符号聚集逼近法对断点进行局部化;时间序列数据最重要的符号表示技术之一。我们将新方案与先前基于遗传算法的方案(GASAX)进行了比较,并展示了新方案如何优于原方案。我们还展示了如何将(DESAX)用于非规范化时间序列的符号聚合近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential evolution versus genetic algorithms: towards symbolic aggregate approximation of non-normalized time series
The differential evolution (DE) is a very powerful search method for solving many optimization problems. In this paper we present a new scheme (DESAX) based on the differential evolution to localize the breakpoints utilized with the symbolic aggregate approximation method; one of the most important symbolic representation techniques for times series data. We compare the new scheme with a previous one (GASAX), which is based on the genetic algorithms, and we show how the new scheme outperforms the original one. We also show how (DESAX) can be used for the symbolic aggregate approximation of non-normalized time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信