与Komornik多项式相连的丢番图方程

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Bazsó, A. Bérczes, Ondřej Kolouch, I. Pink, J. Šustek
{"title":"与Komornik多项式相连的丢番图方程","authors":"A. Bazsó, A. Bérczes, Ondřej Kolouch, I. Pink, J. Šustek","doi":"10.3336/gm.55.1.02","DOIUrl":null,"url":null,"abstract":"We investigate the power and polynomial values of the polynomials Pn(X) = ∏ n k=0 ( X2·3 k − X3 k − 1 ) for n ∈ N. We prove various ineffective and effective finiteness results. In the case 0 ≤ n ≤ 3, we determine all pairs x, y of integers such that Pn(x) = y2 or Pn(x) = y3.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine equations connected to the Komornik polynomials\",\"authors\":\"A. Bazsó, A. Bérczes, Ondřej Kolouch, I. Pink, J. Šustek\",\"doi\":\"10.3336/gm.55.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the power and polynomial values of the polynomials Pn(X) = ∏ n k=0 ( X2·3 k − X3 k − 1 ) for n ∈ N. We prove various ineffective and effective finiteness results. In the case 0 ≤ n ≤ 3, we determine all pairs x, y of integers such that Pn(x) = y2 or Pn(x) = y3.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.1.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了n∈n时多项式Pn(X) =∏n k=0 (X2·3k−X3 k−1)的幂次和多项式值。我们证明了各种无效和有效的有限性结果。在0≤n≤3的情况下,我们确定所有的整数对x, y使Pn(x) = y2或Pn(x) = y3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine equations connected to the Komornik polynomials
We investigate the power and polynomial values of the polynomials Pn(X) = ∏ n k=0 ( X2·3 k − X3 k − 1 ) for n ∈ N. We prove various ineffective and effective finiteness results. In the case 0 ≤ n ≤ 3, we determine all pairs x, y of integers such that Pn(x) = y2 or Pn(x) = y3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信