具有广义1型高斯映射的运河表面

IF 0.6 4区 数学 Q3 MATHEMATICS
J. Qian, Mengfei Su, Young Ho Kim
{"title":"具有广义1型高斯映射的运河表面","authors":"J. Qian, Mengfei Su, Young Ho Kim","doi":"10.33044/REVUMA.1685","DOIUrl":null,"url":null,"abstract":"This work considers a kind of classification of canal surfaces in terms of their Gauss map G in Euclidean 3-space. We introduce the notion of generalized 1-type Gauss map for a submanifold that satisfies ∆G = fG+gC, where ∆ is the Laplace operator, C is a constant vector, and (f, g) are non-zero smooth functions. First of all, we show that the Gauss map of any surface of revolution with unit speed profile curve in Euclidean 3-space is of generalized 1-type. At the same time, the canal surfaces with generalized 1-type Gauss map are discussed.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"17 1","pages":"199-211"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Canal surfaces with generalized 1-type Gauss map\",\"authors\":\"J. Qian, Mengfei Su, Young Ho Kim\",\"doi\":\"10.33044/REVUMA.1685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers a kind of classification of canal surfaces in terms of their Gauss map G in Euclidean 3-space. We introduce the notion of generalized 1-type Gauss map for a submanifold that satisfies ∆G = fG+gC, where ∆ is the Laplace operator, C is a constant vector, and (f, g) are non-zero smooth functions. First of all, we show that the Gauss map of any surface of revolution with unit speed profile curve in Euclidean 3-space is of generalized 1-type. At the same time, the canal surfaces with generalized 1-type Gauss map are discussed.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\"17 1\",\"pages\":\"199-211\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/REVUMA.1685\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/REVUMA.1685","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑了一种基于欧几里得三维空间中运河表面高斯图G的分类方法。对于满足∆G = fG+gC的子流形,我们引入广义1型高斯映射的概念,其中∆为拉普拉斯算子,C为常数向量,(f, G)为非零光滑函数。首先,我们证明了欧几里得三维空间中任意具有单位速度轮廓曲线的旋转曲面的高斯映射是广义1型的。同时,讨论了具有广义1型高斯映射的运河表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canal surfaces with generalized 1-type Gauss map
This work considers a kind of classification of canal surfaces in terms of their Gauss map G in Euclidean 3-space. We introduce the notion of generalized 1-type Gauss map for a submanifold that satisfies ∆G = fG+gC, where ∆ is the Laplace operator, C is a constant vector, and (f, g) are non-zero smooth functions. First of all, we show that the Gauss map of any surface of revolution with unit speed profile curve in Euclidean 3-space is of generalized 1-type. At the same time, the canal surfaces with generalized 1-type Gauss map are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信