{"title":"生物科学文本关系提取的半监督模式学习","authors":"Shilin Ding, Minlie Huang, Xiaoyan Zhu","doi":"10.1142/9781860947995_0033","DOIUrl":null,"url":null,"abstract":"A variety of pattern-based methods have been exploited to extract biological relations from literatures. Many of them require significant domain-specific knowledge to build the patterns by hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semisupervised model is presented to combine both unlabeled and labeled data for the pattern learning procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is refined in the evaluating phase by incorporating the domain knowledge provided by a relatively small labeled data. Comparative results show that labeled data, when used in conjunction with the inexpensive unlabeled data, can considerably improve the learning accuracy.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"25 1","pages":"307-316"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Semi-supervised Pattern Learning for Extracting Relations from Bioscience Texts\",\"authors\":\"Shilin Ding, Minlie Huang, Xiaoyan Zhu\",\"doi\":\"10.1142/9781860947995_0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of pattern-based methods have been exploited to extract biological relations from literatures. Many of them require significant domain-specific knowledge to build the patterns by hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semisupervised model is presented to combine both unlabeled and labeled data for the pattern learning procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is refined in the evaluating phase by incorporating the domain knowledge provided by a relatively small labeled data. Comparative results show that labeled data, when used in conjunction with the inexpensive unlabeled data, can considerably improve the learning accuracy.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"25 1\",\"pages\":\"307-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised Pattern Learning for Extracting Relations from Bioscience Texts
A variety of pattern-based methods have been exploited to extract biological relations from literatures. Many of them require significant domain-specific knowledge to build the patterns by hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semisupervised model is presented to combine both unlabeled and labeled data for the pattern learning procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is refined in the evaluating phase by incorporating the domain knowledge provided by a relatively small labeled data. Comparative results show that labeled data, when used in conjunction with the inexpensive unlabeled data, can considerably improve the learning accuracy.