非语言交际的贝叶斯心理理论研究

Jin Joo Lee, Fei Sha, C. Breazeal
{"title":"非语言交际的贝叶斯心理理论研究","authors":"Jin Joo Lee, Fei Sha, C. Breazeal","doi":"10.1109/HRI.2019.8673023","DOIUrl":null,"url":null,"abstract":"This paper defines a dual computational framework to nonverbal communication for human-robot interactions. We use a Bayesian Theory of Mind approach to model dyadic storytelling interactions where the storyteller and the listener have distinct roles. The role of storytellers is to influence and infer the attentive state of listeners using speaker cues, and we computationally model this as a POMDP planning problem. The role of listeners is to convey attentiveness by influencing perceptions through listener responses, which we computational model as a DBN with a myopic policy. Through a comparison of state estimators trained on human-human interaction data, we validate our storyteller model by demonstrating how it outperforms current approaches to attention recognition. Then through a human-subjects experiment where children told stories to robots, we demonstrate that a social robot using our listener model more effectively communicates attention compared to alternative approaches based on signaling.","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"25 1","pages":"487-496"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Bayesian Theory of Mind Approach to Nonverbal Communication\",\"authors\":\"Jin Joo Lee, Fei Sha, C. Breazeal\",\"doi\":\"10.1109/HRI.2019.8673023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines a dual computational framework to nonverbal communication for human-robot interactions. We use a Bayesian Theory of Mind approach to model dyadic storytelling interactions where the storyteller and the listener have distinct roles. The role of storytellers is to influence and infer the attentive state of listeners using speaker cues, and we computationally model this as a POMDP planning problem. The role of listeners is to convey attentiveness by influencing perceptions through listener responses, which we computational model as a DBN with a myopic policy. Through a comparison of state estimators trained on human-human interaction data, we validate our storyteller model by demonstrating how it outperforms current approaches to attention recognition. Then through a human-subjects experiment where children told stories to robots, we demonstrate that a social robot using our listener model more effectively communicates attention compared to alternative approaches based on signaling.\",\"PeriodicalId\":6600,\"journal\":{\"name\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"volume\":\"25 1\",\"pages\":\"487-496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2019.8673023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文定义了人机交互非语言交际的双重计算框架。我们使用贝叶斯心理理论方法来模拟二元故事互动,其中讲故事的人和听者具有不同的角色。故事讲述者的角色是利用说话者的线索影响和推断听者的注意力状态,我们将其计算为一个POMDP计划问题。听众的作用是通过听众的反应影响感知来传达注意力,我们将其计算为具有短视策略的DBN。通过比较在人际互动数据上训练的状态估计器,我们通过展示它如何优于当前的注意力识别方法来验证我们的故事讲述者模型。然后,通过儿童给机器人讲故事的人类受试者实验,我们证明了与基于信号的替代方法相比,使用我们的听众模型的社交机器人更有效地传达注意力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Theory of Mind Approach to Nonverbal Communication
This paper defines a dual computational framework to nonverbal communication for human-robot interactions. We use a Bayesian Theory of Mind approach to model dyadic storytelling interactions where the storyteller and the listener have distinct roles. The role of storytellers is to influence and infer the attentive state of listeners using speaker cues, and we computationally model this as a POMDP planning problem. The role of listeners is to convey attentiveness by influencing perceptions through listener responses, which we computational model as a DBN with a myopic policy. Through a comparison of state estimators trained on human-human interaction data, we validate our storyteller model by demonstrating how it outperforms current approaches to attention recognition. Then through a human-subjects experiment where children told stories to robots, we demonstrate that a social robot using our listener model more effectively communicates attention compared to alternative approaches based on signaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信